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ABSTRACT

This paper presents a fully automated scheme for breast den-
sity estimation and asymmetry detection on mammographic
images. Image preprocessing and segmentation techniques
are first applied to the image, in order to extract the features
for the breast density categorization. Also a new fractal-
related feature is proposed for the classification. The clas-
sification to 3 classes is realized according to classification
and regression trees (CARTs). The same segmentation result
is used to extract a set of new statistical features for each
breast; the difference of these feature values, between thetwo
images of each pair of mammograms, are estimated and the
asymmetric pairs are detected according to a modified ver-
sion of k-nearest neighbor classifier. This composite method
has been implemented and applied to miniMIAS database,
consisting of 322 mediolateral oblique (MLO) view mammo-
grams, obtained via a digitization procedure. The results are
very promising, showing equal or higher success rates com-
pared to other related algorithms in the literature, despite
the fact that some of them use only small portions of the spe-
cific database. In contrast our methodology is applied to the
complete datatabase.

1. INTRODUCTION

Breast cancer, i.e., a malignant tumor developed from breast
cells, is considered to be one of the major causes for the in-
crease in mortality among women, especially in developed
countries. More specifically, breast cancer is the second most
common type of cancer and the fifth most common cause of
cancer death [13].

While mammography has been proved to be the most ef-
fective and reliable method for early breast cancer detection
[15], the large number of mammograms, generated by popu-
lation screening, must be interpreted and diagnosed by a rel-
atively small number of radiologists. This is also one of the
reasons why it is widely accepted today that automated Com-
puter Aided Diagnosis (CAD) systems are starting to play an
important role in modern medical practices.

Most of the CAD systems try to detect abnormalities
based on a single mammographic image and on an objec-
tive abstract model of the abnormalities. However, there is
a high correlation between high breast parenchymal density
and high risk of breast cancer [20]. Thus, mammographic
images with high breast density value should be examined
more carefully by the radiologists, creating a need for auto-
matic breast parenchymal density estimation algorithms. In
[11], such algorithms in the literature are presented and a new
technique, introducing a histogram distance metric, achieves
good results. Some existing algorithms, e.g., [2, 14], use

the texture information of mammograms, in order to extract
more features for the breast density estimation.

Radiologists also pay attention to possible asymmetries
between the left and the right breast in a pair of mammo-
grams, as they can provide clues about the presence of early
signs of tumors [8]. In order to help the radiologists, many
CAD systems analyze the images of a mammogram pair and
detect asymmetric regions by applying some type of align-
ment and direct comparison [21]. In [6], a new directional
analysis method is proposed, using Gabor wavelets, in order
to detect possible asymmetries.

In this work, a new breast parenchymal density estima-
tion algorithm is proposed, using segmentation, first order
statistics and fractal analysis of the mammographic image
for the extraction of new statistical features, while the clas-
sification task is performed using Classification and Regres-
sion Trees (CARTs). Furthermore, a new algorithm is pro-
posed for breast asymmetry detection, using the feature val-
ues already extracted from the breast parenchymal density
estimation step, using a modified version of k-nearest neigh-
bor classifier. Both techniques achieve high success rates,of-
ten higher than the corresponding values of other algorithms
in bibliography, while they use simpler and faster feature ex-
traction methods.

The rest of this paper is organized as follows. In sec-
tion 2, the mammographic image database used is presented.
The breast parenchymal density estimation method and the
asymmetry detection algorithm are described in section 3.
Section 4 presents the results obtained by the two proposed
algorithms and, finally, the discussion and conclusions are
presented in section 5.

2. DATASET

The new methodology presented in this work was applied
on miniMIAS database [16], available online freely for sci-
entific purposes and consisting of 161 pairs of mediolat-
eral oblique (MLO) view mammograms. The images of the
database originated as the product of a film-screen mammo-
gram process in the United Kingdom National Breast Screen-
ing Program. The films were digitized and the correspond-
ing images were annotated according to their breast density
by expert radiologists, using three distinct classes: Fatty (F)
(106 images), Fatty-Glandular (G) (104 images) and Dense-
Glandular (D) (112 images), similar to [12]. Any abnormal-
ities were also detected and described, including calcifica-
tions, well-defined, spiculated or ill-defined masses, archi-
tectural distortions or asymmetries. Each pair of images of
the database is annotated as Symmetric (146 pairs) or Asym-
metric (15 pairs). The severity of each abnormality is pro-
vided, i.e., benignancy or malignancy.
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A typical mammographic image is shown in figure 1a.
The presence of high noise is readily observed; this makes
the segmentation of the image a demanding task. More-
over, speckle noise was added through the original digitiza-
tion processing of the film mammograms. The original 0.2
mm/pixel images were resized to 0.4 mm/pixel, as in [10]
and [11], in order to reduce the required computational time.
The initial bit depth of 8 bits was preserved.

3. METHODS

3.1 Breast Density Estimation

3.1.1 Image Preprocessing

The noise of the image, e.g., high intensity scanning labels,
or tape artifacts, is detected and excluded from the remaining
processing, using the same concept as in [11]. Figure 1b
shows an example of this process.

In order to estimate the breast boundary, the algorithm
in [11] was implemented. The key idea of the algorithm is
that the skin-air boundary is the smoothest section of identi-
cal pixels near the breast edge, detected using a thresholding
technique. A result of the algorithm is presented in figure 1c.

The pectoral muscle, which is the high-intensity trian-
gular region across the upper posterior (left) margin of the
image, appeared only in MLO view of left-breast mammo-
grams, is detected according to [10], with the modifications
and improvements of [18]. An example is presented in figure
1d.

Besides the noise segmentation techniques already pre-
sented, image processing techniques are also applied for the
improvement of the overall image quality. Specifically, a
gaussian smoothing filter [7] with variable kernel sizehsize
and standard deviationsigma is applied on each image, in
order to remove the noise. Subsequently, an unsharp filter

[7] with maskhUNSHARP=
1

1+a ·

[

−a a−1 −a
a−1 a+5 a−1
−a a−1 −a

]

of

variable parameteralpha is applied for edge enhancement.
The above parameters were automatically tuned according
to the following scheme. The following values were given to
the variables and, for each combination of values, the success
rate of the breast density estimation technique was recorded:

• hsize: 3x3, 5x5, 7x7, 9x9, 11x11 (pixels x pixels)
• sigma: 0.1, 0.4, 0.7, 1.0
• alpha: 0.1, 0.4, 0.7, 1.0

The values that achieved the best success rate were thehsize
7x7, sigma0.4 andalpha 0.7; these best values were used
as the baseline for enhancing all the images in the database
prior to any breast segmentation and parenchymal analysis.

3.1.2 Feature Estimation

The previously proposed methodology was applied to each
mammogram of the miniMIAS database and the results are
illustrated in figure 1, showing:

• The initial I image (figure 1a).
• The background area, labels and artifacts have been ex-

cluded, to obtain theBackarea (figure 1b).
• The human-tissueHuT area (figure 1c), which has been

obtained after extracting background, labels, artifacts and
noise from the initial image.

(a) I area (b) Backarea (c) HuT area (d) BrT area

Figure 1: a) Initial ImageI , b) backgroundBack, c) tissue-
rich areaHuT and d) breast tissue areaBrT

• The segmented breast tissueBrT area (figure 1d), which
has been obtained after extracting the pectoral muscle
from the human-tissueHuT area.
In order to analyze and model the overall noise levels in

the image, the mean and variance of the pixel intensity values
are estimated in theBackarea (no tissue or artifacts), using
equations (1)-(2):

F1 = µBack=

∑
(i, j)∈Back

I (i, j)

N(Back)
(1)

F2 = σ2
Back=

∑
(i, j)∈Back

(I (i, j)− µBack)
2

N(Back)
(2)

whereN (R) is the number of pixels in regionR.
Then estimate the synthetic featuresF3 and F4 for the

breast tissue (BrT) area, using equations (3)-(4):

F3 =
SBrT

N(BrT)
(3)

F4 =
PBrT

µ2
BrT

(4)

whereSBrT is the surface andPBrT the power of theBrT area
and can be found according to equations (5)-(6)

SBrT = ∑
(x,y)∈BrT

I (x,y)+1+ |I (x+1,y)− I (x,y)|

+ |I (x,y+1)− I (x,y)| (5)

PBrT = ∑
(x,y)∈BrT

|I (x,y)|2 (6)

Next, an algorithm for the computation of the fractal-
related feature, based on the power spectrum [7] of the image
is provided. The initial image is resized to the lower resolu-
tion of 1.6mm/pixel, after placing black (zero-valued) pix-
els to the non-HuT area. The absolute values of the Fourier
transform of the derived image are estimated and averaged
over the four quarters. The estimated image is cropped to
become square and the logarithmic values over the main di-
agonal of the image are extracted. An exponential function
f (x) = Aexp(Bx)+C is fitted to the extracted data and the
featureF5 = B is obtained, as the feature related to the fractal
exponent of the texture of the human tissue [9].

Next, the human tissueHuT is used to perform the min-
imum cross entropy (MCE) thresholding [4] three times, ac-
cording to the following scheme:
• T is the (baseline) threshold derived from MCE at gray

level range
[

1,28−1
]
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(a) Segmentation scheme(b) ROI1,ROI2 (c) ROI3,ROI4 (d) ROI5

Figure 2: a) Segmentation scheme, b)ROI1 and ROI2, c)
ROI3 andROI4 and d)ROI5

F1 = µBack F8 = µROI2 F15 = σ2
ROI4

F2 = σ2
Back F9 = σ2

ROI2
F16 = r4

F3 = SBrT
N(BrT) F10 = r2 F17 = wr4

F4 = PBrT
µ2

BrT
F11 = wr2 F18 = µROI5

F5 = FE (HuT) F12 = µROI3 F19 = σ2
ROI5

F6 = µROI1 F13 = σ2
ROI3

F20 = r5

F7 = σ2
ROI1

F14 = µROI4 F21 = wr5

Table 1: Features used for breast density estimation.

• T1 is the threshold derived from MCE at gray level range
[

T +1,28−1
]

• T2 is the threshold derived from MCE at gray level range
[

T1 +1,28−1
]

The value of the thresholdT2 is used to segment the main
core of the glandular tissue from the remaining breast area,
as figure 2b shows. The lower thresholdT1 results to a larger,
more detailed description of the glandular tissue, as observed
at figure 2c. Note that all the possible regions combining the
two thresholdsT1 and T2 are extracted, as figure 2 shows.
This is due to the importance of the remaining fatty tissue af-
ter each segmentation (corresponding to the two thresholds),
with regard to shape and size information of the glandular
tissue compared to the remaining breast area. So we extract
the following regions:
• ROI1: the pixels I(x,y) with 0≤ I (x,y) ≤ T2.
• ROI2: the pixels I(x,y) withT2 < I (x,y) ≤ 28−1.
• ROI3: the pixels I(x,y) with 0≤ I (x,y) ≤ T1.
• ROI4: the pixels I(x,y) withT1 < I (x,y) ≤ 28−1.
• ROI5: the pixels I(x,y) withT1 < I (x,y) ≤ T2.

Finally, for each one of the above regionsROIi, the mean
µROIi and the varianceσ2

ROIi
of the intensities of the pixels

are estimated, according to equations (1) and (2) and for the
regionsROI2, ROI4 andROI5 the features are estimated using
equations (7)-(8):

r i =
N(ROIi)
N (BrT)

(7)

wri =

∑
(x,y)∈ROIi

I (x,y)

∑
(x,y)∈BrT

I (x,y)
(8)

This results to a total number of 21 features, as table 1
shows.

F1 = FBRD
10 F14 = µY−AXIS

ROI2
F27 = kuY−AXIS

ROI4
F2 = FBRD

11 F15 = σY−AXIS
ROI2

F28 = mY−AXIS
ROI4

F3 = FBRD
16 F16 = skY−AXIS

ROI2
F29 = µX−AXIS

ROI5
F4 = FBRD

17 F17 = kuY−AXIS
ROI2

F30 = σX−AXIS
ROI5

F5 = FBRD
20 F18 = mY−AXIS

ROI2
F31 = skX−AXIS

ROI5
F6 = FBRD

21 F19 = µX−AXIS
ROI4

F32 = kuX−AXIS
ROI5

F7 = FBRD
5 F20 = σX−AXIS

ROI4
F33 = mX−AXIS

ROI5
F8 = N (BrT) F21 = skX−AXIS

ROI4
F34 = µY−AXIS

ROI5
F9 = µX−AXIS

ROI2
F22 = kuX−AXIS

ROI4
F35 = σY−AXIS

ROI5
F10 = σX−AXIS

ROI2
F23 = mX−AXIS

ROI4
F36 = skY−AXIS

ROI5
F11 = skX−AXIS

ROI2
F24 = µY−AXIS

ROI4
F37 = kuY−AXIS

ROI5
F12 = kuX−AXIS

ROI2
F25 = σY−AXIS

ROI4
F38 = mY−AXIS

ROI5
F13 = mX−AXIS

ROI2
F26 = skY−AXIS

ROI4

Table 2: Features used for asymmetry detection

3.1.3 Classification

For the classification of the images according to the breast
density, Classification and Regression Trees (CARTs) [3] are
used. The main motivation for this selection was the sim-
plicity of these trees, as they make no assumption regarding
the underlying distributions of the values of the predicted
variables. They use simple linear thresholds, resulting to
intuitive separation of classes, while there is no need for a
feature reduction preprocessing, as CARTs select the infor-
mative features themselves. We use three CARTs, equal to
the number of the classes. The CART treeTri is trained to
output the value 1 for the images of classi and the value 0
for all the remaining images. So we use an unknown pat-
tern as input to all the CART trees and classify to classj,
so thatout put(Tr j) = max{out put(Trk)}

1≤k≤3
, according to the

one-against-all classification scheme [17].

3.2 Asymmetry Detection

3.2.1 Feature Extraction

The basic idea in the feature extraction phase is to use the
inner segmentation of the breast, already obtained from the
mammographic breast density estimation steps, to detect
possible asymmetries between a pair of mammograms. For
each mammogram, the features described in table 2 are cal-
culated. Note that:
• For each one of the regionsROI2, ROI4, ROI5, consider

the pixels inROIi as ‘on’ pixels. In order to find the x-
axis cummulative projection in the form of a histogram,
estimate the number (sum) of ‘on’ pixels in every row
of the image. In the same way we obtain the y-axis his-
togram (cummulative projection), as shown in figure 3.
Subsequently, estimate the first-order statistics for each
of these histograms, meaning mean valueµ , standard de-
viationσ , skewnesssk, kurtosiskuand medianm.

• The valueFBRD
i corresponds to the featurei of the mam-

mographic breast density estimation step (table 1).
The feature vector of lengthN = 38, described in table

2, is estimated for each mammogram. However, in our case,
we are interested in detecting asymmetries between a pair of
mammograms. Thus, we should detect the cases where the

1871



(a) Mask (b) x-axis histogram (c) y-axis
histogram

Figure 3: a) Initial Mask, b) x-axis and c) y-axis histogram

values corresponding to the left and the right mammograms
differ significantly. Suppose that for the left breast mam-
mogram we have estimated the feature vectorf and for the
corresponding right breast mammogram the feature vectorg.
Then, construct the following differential features of equa-
tions (9)-(11) that can be used to detect possible asymmetry
between a pair of mammographic images:

FASYMMD
1−38 =

| fi −gi|

max( fi ,gi)
(9)

FASYMMD
39−76 = | fi −gi| (10)

FASYMMD
77−114 = | fi −gi|

3 (11)

where 1≤ i ≤ 38, resulting to a feature space of 114 features
in total.

3.2.2 Classification

For the classification of a pair of mammograms according
to a possible asymmetry, a modified version of the typical
k-nearest neighbor classifier is used. The classifier imple-
mented is described below. Consider a two class problem
with classesC1 andC2, containingN1 and N2 samples re-
spectively. For an unknown input pattern,w, estimate thek
nearest neighborsni , 1≤ i ≤ k, according to Euclidean Dis-
tance and then calculate the values of the following variables:

sum1 (w) =
N2

N1
·

k

∑
i=1

ni∈C1

1
di

(12)

sum2 (w) =
N1

N2
·

k

∑
i=1

ni∈C2

1
di

(13)

wheredi is the Euclidean Distance of the unknown patternw
to theni nearest neighbor.

Then the unknown pattern is classified as:

w∈

{

C1 , i f sum1 (w) > sum2 (w)

C2 , i f sum1 (w) < sum2 (w)
(14)

The previous classifier is similar to the a standard k-nn
classifier. The difference lies in that the confidence value of
each class is multiplied with a constant term, in order to cope
with the class imbalance problem [17]. If, for example, class
C1 is oversampled, the constantN2

N1
(< 1) is multiplied with

sum1, resulting to a different weight of the patterns of each
class.

BREAST
DENSITY

TRUE CLASS
F G D

PREDICTED
CLASS

F 88 (88) 21 (12) 7 (3)
G 10 (12) 52 (59) 28 (37)
D 8 (6) 31 (33) 77 (72)

Table 3: Results of the proposed breast density estimation
algorithm. Values inside parentheses are the results obtained
when using the manual segmentation method.

4. EXPERIMENTS AND RESULTS

The method for evaluating the algorithms is the leave-one-
out, which is one of the most common cross-validation meth-
ods [17].

4.1 Breast Density Estimation

The proposed mammographic breast density estimation algo-
rithm was tested on all the images of the miniMIAS database,
fully annotated according to 3 breast density classes. Note
that masks capable of extracting the background, obtained
by manual segmentation of the tissue-related areas [19] have
been used. Thus, it was possible to compare the results de-
rived by the fully automated and the manually segmentated
techniques, as it is presented in table 3. Values inside paren-
theses were the corresponding values, using the manual seg-
mentation. For the evaluation of the algorithm the work in
[11] was used, where the Closest Point Distance algorithm
proposed achieved 66.15% success rate, while a previous
work [1] reported 65%, when applied to a subset of the min-
iMIAS database. The results of our method achieved a suc-
cess rate of 67.32%, using the fully automatic segmentation
method. As expected, when using the manual segmentation
the results were better (68.01%) since the feature extraction
procedure used slightly better segmentation data of the mam-
mographic breast area.

4.2 Asymmetry Detection

The proposed asymmetry detection algorithm was applied to
all the images of the database, fully annotated as symmet-
ric (SYMM) or asymmetric (ASYMM). The features were
processed through univariate significance analysis, specifi-
cally T-test [5], resulting to a feature vector of predefined
length 18. The results of the algorithm are shown in table 4.
Similarly to breast density estimation algorithm, the results
derived by the fully automated and the manual segmentation
techniques are presented. Values in parentheses are the corre-
sponding results when using the manual segmentation tech-
nique. For the evaluation of the algorithm the work presented
at [6] was used, where an asymmetry detection technique us-
ing Gabor wavelets was presented and tested on 80 images
of the miniMIAS database, achieving an average classifica-
tion accuracy of 74.4%. The results obtained were for the
manual segmentation 73.91% and for the automatic method
70.19% However, note that our method is computationally
simpler and more importantly it is based on quantities used in
4.1. Thus our method addresses the tasks of mammographic
breast density estimation and asymmetry detection in an uni-
fying context.
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BREAST
PAIR

TRUE CLASS
SYMM ASYMM

PREDICTED
CLASS

SYMM 208 (218) 12 (10)
ASYMM 84 (74) 18 (20)

Table 4: Results of the proposed asymmetry detection al-
gorithm. Values inside parentheses are the results obtained
when using the manual segmentation method.

5. DISCUSSION AND CONCLUSION

The results of this new method for mammographic breast
density estimation and asymmetry detection were analyzed
and evaluated against all the images of the miniMIAS
database. The high level of noise of the images, due to the
digitization process, has made the segmentation process an
even harder classification task; however the success rate re-
mains high when using the manual ground truth segmenta-
tion technique and close to the results produced when using
the fully automated segmentation technique [18].

The proposed algorithm formammographic breast den-
sity estimationachieves better results than the work at [11]
and similar results as the work at [14], which uses only a
small portion of the miniMIAS. The work at [2] achieves
higher values of success, but it uses textural features, which
are computationally very expensive. The work we propose
uses simple first order statistics features and a new technique
for the power spectrum estimation, making it suitable for
real-time applications.

Theasymmetry detectionscheme uses the segmentation
already obtained via the breast density estimation procedure.
It achieves a success rate similar of the bibliography, al-
though it uses all the images of the miniMIAS database, in-
stead of a small subset, as in [6]. Therefore our experimental
results are considered more reliable. Furthermore, the useof
the modified version of the k-nn algorithm has been proved
a simple yet effective way to overcome the problem of the
imbalanced classes.
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