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ABSTRACT
In this paper, a recursive fuzzy inference system that can
be applied to estimate the error probability of tracking al-
gorithms used in medical image processing systems is pro-
posed. Specifically, we are interested in the fiber bundles
estimation process (fiber tracking) in diffusion tensor (DT)
fields acquired via magnetic resonance imaging (MRI). As
tracking algorithm we consider a previously developed prob-
abilistic tracking algorithm (PTA). This paper studies the
analogies between this tracking approach and a typical Mul-
tiple Hypotheses Tracing (MHT) system, which is closely
related to fuzzy systems. This comparison leads to the devel-
opment of a SAM (Standard Additive Model) fuzzy system
that on-line provides the uncertainty of the decisions about
the estimated fiber tracts. Experiments on both simulated and
real DT-MR images demonstrate the validity of the method.

1. INTRODUCTION

Diffusion Tensor (DT) Magnetic Resonance Imaging (MRI)
has recently gained significant popularity due to its ability
to measure the anisotropic diffusion of water in structured
biological tissues [1]. Since in cerebral white matter most
random motion of water molecules are restricted by axonal
membranes and myelin sheets, diffusion anisotropy allows
depiction of directional anisotropy within neural fiber struc-
tures.

The estimation of white matter fiber tracts in the brain
–e.g. corpus callosum, corticospinal tract– becomes very
interesting in many clinical applications: surgical planning,
radiation therapy planning and 3-D visualization. Besides,
strong demands exist to accomplish this task automatically
by computer.

The DT is normally interpreted by calculating its eigen-
values and eigenvectors. That eigenvector corresponding to
the largest eigenvalue describes the principal diffusion di-
rection while the corresponding eigenvalue is a quantitative
measure of the diffusion in that specific direction. Most of
the existing methods for fiber tracking rely only on the direc-
tion of principal diffusion to create integral curves that esti-
mate the fiber paths [2, 3]. Other approaches explore more
of the information contained in the diffusion tensor. For ex-
ample, Hagmann et al. [4], consider the tensor as a prob-
ability distribution. Parker et al. (2001) [5] and Campbell
et al. [6] have proposed the use of level set theory to find
the tracts. These approaches focus on the problem of pre-
venting leakage from the bundle structure that represents the
fibers. On the other hand, Batchelor [7] uses more of the
tensor information by iteratively solving the diffusion equa-
tion. This way, paths are created that originate from a chosen

seed-point and can be considered as probability measures of
a tract. A similar approach is presented by O’Donnell et al.
[8], where the steady state of the diffusion equation to create
a flux vector field is found. The authors show how the inverse
diffusion tensor can define a Riemannian metric that is used
to find geodesic paths that can be interpreted as fiber tracts.

However, and due to both some deficiencies in these
tracking algorithms and the corrupted data that is present in
existing DT acquisitions (mainly due to noise, inhomogene-
ity or partial volume effect), tracking algorithms may depict
fiber tracts which do not exist in reality or miss to visualize
important branching structures. In order to avoid misinter-
pretations, the viewer of the visualizations must be provided
with some information on the uncertainty of a depicted fiber
and of its presence in a certain location. In this paper we will
use a recently developed probabilistic tracking algorithm[9]
that takes into account the whole information provided by
the diffusion matrix, i.e., it does not only consider the prin-
cipal eigenvector direction but the complete 3D information.
Besides, the algorithm includes a procedure that adapts the
number ofoffspring pathsemerging from any studied voxel
to the degree of anisotropy observed in its proximity, im-
proving, this way, the estimation robustness in areas where
multiple fibers cross while keeping complexity to a moderate
level.

A parallelism between the proposed PTA and the MHT
strategy [11, 12] is developed. Since the MHT procedure is
directly related to fuzzy logic, a fuzzy inference engine for
the estimation of the uncertainty of the tractography process
will be then obtained. This recursive fuzzy system will cal-
culate more reliable estimates of the tracts certainty. In Sec-
tion 2, the main notions of the proposed tracking scheme are
summarized, while Section 3 describes the basic concepts of
the MHT approach, in order to establish a parallelism of con-
cepts in both approaches. Next, in section 4, the development
of a recursive SAM fuzzy system for the performance eval-
uation of the tracking scheme is studied. The paper finishes
with the Numerical Results and the Conclusions sections.

For the sake of brevity, the reader interested in the review
of previous related approaches can consult the corresponding
section in [9].

2. PROBABILISTIC FIBER TRACKING
ALGORITHM

The tracking algorithm used in this paper was initially de-
veloped in [9]. Thus, this section presents a summary of the
method. The algorithm uses probabilistic criteria and iterates
over several points in the analyzed volume (the points given
by the highest probabilities in the previous iteration). The
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algorithm starts in a user-selected seed voxel,V0.
At every iteration, the method evaluates a set of parame-

ters related to the central voxel of a 3×3×3 cubic structure.
The central point,Vc, represents the last point of the tract be-
ing analyzed. In the first iteration,Vc = V0. There exist 26
possible directions to take for the next iteration (in orderto
select the next point of the tract).

2.1 Basic concepts

Once a DT-MR volume has been scanned, the tracking pro-
cess starts in a user-selected seed voxel,V0. A new pointVk is
added to the estimated tract (or path) at every iteration of the
algorithm. PointVk is the voxel with the highest local proba-
bility Pl , a parameter which is calculated for every voxel that
surrounds the last estimated point of the path.

Local probabilityPl is calculated as

Pl = b(ξ1sp1 +ξ2sp2 +ξ3sp3 +ξ4sp4)+(1−b)P′

l (1)

whereb stands for a weighting factor andξ1, ξ2, ξ3 andξ4
are the corresponding weights of the so-calledsmoothness
parameters, spi (described in [13]). Both their mathematical
expressions and their geometrical meaning are explained in
[9]. These parameters measure the angles between the direc-
tions that join successive path points, as well as the angles
between these directions and the eigenvectors associated to
the largest eigenvalues found in those voxels.sp2, sp3 and
sp4 are used to maintain the local directional coherence of
the estimated tract and avoid the trajectory to follow unlikely
pathways. The threshold forsp1 is set such that the tracking
direction could be moved forward consistently and smoothly,
preventing the computed path from sharp transitions.

2.2 Fractional anisotropy

ParameterP′

l in Eq. (1) can be written as

P′

l = α ·µ1 · f a(Vl )+(1−α) ·µ2 ·Pl , 0 < α < 1 (2)

where parameterα allows the user to give a higher relative
weight to either the anisotropy or the local probability, and
µ1 and µ2 are scaling factors.f a represents the fractional
anisotropy, which is calculated as1,

f a =

√

(λ1−λ2)
2 +(λ2−λ3)

2 +(λ1−λ3)
2

2(λ 2
1 +λ 2

2 +λ 2
3 )

, (3)

with (λ1,λ2,λ3) being the three eigenvalues of the diffusion
matrix of voxelVl . Finally, parameterPl in Eq. (2) is cal-
culated based on the probability of going from the last esti-
mated voxel of the tract,Vc, to its surrounding voxels. This
probability takes into account the eigenvalues and eigenvec-
tors available at pointVc from the DT-MR image diffusion
matrix. Specifically, it takes into account the projection of
each of the eigenvectors to each of the directions involved in
the change of spatial position fromVc to Vl .

ProbabilitiesPl in Eq. (1) can be recursively accumu-
lated, yielding the probability of the path generated by the
successive values ofVc,

Ppath(k) = P∗

l ·Ppath(k−1) (4)

1Though not explicitly shown, the set of valuesP′

i is properly normalized
so that they can be interpreted as probabilities.

with k being the iteration number,P∗

l = Pl/∑l Pl , and
Ppath(0) = 1. At the end of the visualization stage, every

estimated path is plotted with a color that depends onPp.

2.3 Pool of possible seeds

At the end of each iteration, a pool of voxels is formed by
selecting thes best voxels according to Eq. (1). The first
voxel of the pool becomes the central voxelVc at next itera-
tion, expanding, this way, the current pathway. As proposed
in [14], the value ofs is adjusted depending on the degree
of anisotropy found in current voxelVc and its surroundings.
When this anisotropy is high, it means that a high direction-
ality exists in that zone, and the probability thatVc belongs
to a region where fibers cross is really low. Consequently,s
takes a small value (1, 2 or 3). On the other hand, ifVc is
found to be situated in a region of high anisotropy, the prob-
abilities of having fibers crossing or branching is higher. In
this case, it is interesting to explore various paths starting in
Vc. This can be achieved by increasing parameters.

Notice that parameters (a,b,µ1,µ2,ξ1,ξ2,ξ3,ξ4) must be
adjusted in order to get satisfactory results when estimating
the tracts of the volume being analyzed. This is a tedious task
that has always been heuristically approached. In this paper,
we have used the strategy proposed in [15], where a neu-
ral network with a variable number of hidden layers and the
backpropagation algorithm for weights’ learning is proposed
for the estimation of these parameters. This adjustment is
useful when the algorithm is applied to a different part of the
brain (fiber bundles) or when the scanning conditions have
changed.

3. PARALLELISM PTA VSMHT

A fuzzy version of Reid’s classical MHT algorithm [12] was
proposed in [11]. This system is based on the likelihood
discrimination and it was applied to the tracking of natural
language text-based messages. [11] shows the possibility of
handling information about any time-varying phenomenon,
as long as the phenomenon can be described by means of
a few keywords, and the phenomenon itself is statistically
causal in the sense that the distribution of future states issta-
tistically dependent on the past observed states. This study
has already been carried out through the mathematical anal-
ysis of single-fuzzy-input single-fuzzy-outputfeedback sys-
tems for hypotheses likelihood determination.

It is easy to see the following parallelism that leads to
the possibility of a tract probability estimation based on text-
messages (fuzzy-messages): (i) the natural-language mes-
sages in [11] and the noisy DT-MR image constitute, in both
cases, the source ofnoisy or ambiguousinformation, (ii)
the tracksused in the MHT algorithm, which are defined as
sequences of associated symbols, can be clearly associated
to the possible sequences of points in the 3D space, in the
tracking context, (iii) the system in [11] associates multiple
messages generated along time by using a specific stochastic
model for the applications’ dynamics. In our case, this model
can be the information provided by the anisotropy measured
using Eq. (3), (iv) the termtarget denotes some condition
that generates observable phenomena. In our context, these
targets are the sequences of points that define a tract.

Another important issue that must be taken into ac-
count is that the fuzzy inference rules that update the
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tracks/sequences probabilities (Fig. 3 in [11]) must now be
especially adapted. In our problem, every time a new pointVk
is processed, the set of possible tract hypotheses is increased,
with equiprobable hypotheses.

As a consequence, the MHT system can be viewed as
a probabilistic approach for multiple targets tracking. The-
oretically, this algorithm conservesall the hypotheses that
explain the observation until certain time, together with an
estimation of the probability of each hypothesis [11]. At the
end, the hypothesis with the highest likelihood is taken as the
solution. On the other hand, the uncertainty in the prediction
of the future positions found in the MHT of [11], resembles
the creation of new fiber tracts based on the previous ones.
The PTA maintains a finite set of hypotheses (see thepool
of future seedsin section 2.1) with their associated probabil-
ities, and tracts are visualized based on these data.

4. FUZZY ESTIMATION OF TRACTOGRAPHY
PERFORMANCE

In this section we propose a recursive SAM (Standard Addi-
tive Model [16]) fuzzy subsystem that allows to monitor the
performance of a DT-MRI tracking system such as our PTA.
The SAM model allows to work with linguistic descriptions
and ambiguities. This kind of description allows to fuzzy-
quantify the errors in the tractography problem.

The system here proposed consists in three connected
fuzzy inference engines (FIEs), as depicted in Fig. 1. It is
necessary to develop an algorithm where the inputs to the
MHT system have some correlation.

Figure 1: Recursive SAM fuzzy system for estimation of the
error probability of the estimated error tracts.

The inputsOA andOB to FIE-1 are two different tracts
(hypotheses) estimated by the algorithm sharing in common
the first and the last points (in practice, both tracts must start
and finish in near voxels). These tracts are prolonged on one
side with a new sample every time a new point is considered
(at every iteration of the tracking algorithm), while the last
point of the tracts is lost. This way, the compared tracts have
always the same length.

In order to evaluate the similarity between two tract hy-
pothesesOA andOB, it is necessary to quantify their simi-
larity using a 3D distance. As a consequence, asimilarity
coefficientthat depends on the distance between these two
considered tracts can be assigned.

In order to implement a fuzzy system, we must establish
a relation between thiscrisp value (defined in[0−M]) and
the fuzzy sets where a linguistic variable is defined. This
relation is shown is Fig. 2.

This allows to obtain the possible fuzzy values ofI2 (out-
put of the first FIE and input to the second).

M M-1 1 0

Very
Unlikely Unlikely Likely

Very
Likely

Figure 2: Fuzzification of the crisp similarity between tract
hypothesesOA andOB.

Next, we relate theprediction errorε used as input in the
FIE-2 with the anisotropy observed in the last (currently pro-
cessed) point of the tract. This way, if a large anisotropy is
obtained, the tract would be rather smooth in the proximity
of the current voxel andε will take a small value for those
hypotheses (future points to expand the current tract) thatin-
volve a small change in the fiber direction. On the other hand,
when the anisotropy is small (meaning an isotropic volume
area), parameterε would be the same for every direction (hy-
potheses). The value ofε must, also, be fuzzified.

This way, the FIE-1 estimates the likelihood of two close
tracts. Next, FIE-2 weights this estimate with respect to
the prediction error (that is inversely proportional to the
anisotropy) and obtains a second likelihood. This value is
used to update theglobal likelihood(or global reliability),
which is a measure of the tracking estimation error probabil-
ity. This third process is performed by FIE-3. Thus, this third
block updates, with a feedback system, the previous system
knowledge every time a new point is processed.

5. NUMERICAL RESULTS

In order to evaluate the proposed algorithm, we have used
both synthetic and real DT-MR images.

5.1 Synthetic images

First, four different synthetic DT-MRI data in a 50×50×50
grid have been generated (see Fig. 3). The first three im-
ages were used for testing in [9]. To make the simulated field
more realistic, Rician noise [17] was added to the diffusion
weighted images which were calculated from the Stejskal-
Tanner diffusion equation2 using the gradient sequence in
[18] and ab-value of 1000.

The noisy synthetic diffusion tensor data was obtained
using an analytic solution to the Stejskal-Tanner equation.
Eigenvectors in the isotropic areas were:λ1 = λ2 = λ3, while
in the remaining voxels of the imageλ1 = 7, λ2 = 2, λ3 = 1.
In our study, the SNR varies from 5 to 30 dB.

The “star” image consists of six orthogonal sine half-
waves, each of them with arbitrary radius. This is the most
complicated situation since the diffusion field experiments
variations with the three coordinate axes and there exists a
crossing region. Three different tracking results are shown
in Fig. 3 bottom-right. Estimated tracts are printed over the

2This equation relates diffusion weighted measurements (S) to measure-
ments without diffusion weighting (S0): S= S0 exp(−dD), with D being the
diffusion coefficient.
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Figure 3: Synthetic DT-MR images used for testing the pro-
posed algorithm: “cross” (top, left), “earth”, “log” and “star”
(bottom, right).

red synthetic image. The algorithm is always able to fol-
low the right paths. (Tracking examples for the other simpler
synthetic images can be found in [9]).

The differentiation between voxels belonging to a fiber or
to a very isotropic area, respectively, is attained by mapping
the path probabilities given by the output of the FIE-3 (see
Fig. 1) into a color scale and classifying them according to
some fixed thresholds3. Three different seeds (S1, S2 andS3)
are shown on the star figure.S1 andS2 belong to the intrinsic
volume (voxels with a very high anisotropy) and the algo-
rithm moves through the most probable direction following
the main direction of the cross in each situation. On the other
hand, when an extrinsic point such asS3 is selected as seed,
the algorithm explores in the neighboring voxels until it finds
a voxel with a high anisotropy value (pointP1). OnceP1 is
found, the tracking algorithm proceeds as in the case ofS1
andS2.

These simulations show how the algorithm finds the
proper fiber path whatever (extrinsic or intrinsic) seed voxel
is chosen. Notice that, the extrinsic seedsS3 are located far
away from the fiber bundles region, thus making the algo-
rithm explore a wider range of points before reaching the
pointsP1 that belong to an existing fiber path.

Next, we compare the estimates of the tracts certainty of
the probabilistic tracking algorithm (PTA) described in sec-
tion 2.1 with and without implementing the fuzzy engine for
estimating the probability of error. Figure 4 shows the mean
probability of wrong estimation (average value in 10 execu-
tions) and Fig. 5 presents the mean variance of these estima-
tors, for different signal qualities.

It can be seen that: (i) the probability of error increases
as the SNR of the original image improves; more complex
images have larger tracking error estimates, (ii) the tracking
error improves notably when the fuzzy engine is used for es-
timation, and (iii) though not shown in the Figure, the fuzzy
engine was also added to a Bayesian tracking approach sim-
ilar to that proposed in [10]. Analyzing this case, it could be
appreciated that the PTA-fuzzy algorithm obtained slightly

3If no fuzzy system is used, the path probabilities are given by Eq. (4).

Figure 4: Mean probability of error of the probabilistic track-
ing scheme proposed, with and without the fuzzy method for
estimation of the probability of error. Synthetic images from
Fig. 3 were used.

more accurate certainty estimates.
Figure 5 shows how the fuzzy procedure greatly de-

creases the variance of the estimator, leading to more robust
and accurate estimations, specially for low quality images.

Figure 5: Variance of the reliability estimators for the four
synthetic images. Bold traces correspond to PTA without
fuzzy assistance. Non-bold lines correspond to PTA+fuzzy.

It can be observed that the fuzzy-aided approach gets
much smaller estimation variances. This estimation proce-
dure is rarely influenced by both the SNR of the image and
image complexity (in terms of anisotropy).

5.2 Testing with real brain’s corpus callosum images

The proposed PTA is finally applied to a real DT-MR im-
age. Specifically, we have selected thecorpus callosumof
the brain (see Fig. 6).

Tracking results are shown for six different trials. It can
be appreciated how the algorithm is able to follow the main
fiber bundle direction without getting out of the area of inter-
est. As an example, we have included the second case (on the
top-middle) were a wrong path arises from the correct fiber
bundle.
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Figure 6: Different fiber bundles estimation results for the
corpus callosumof the human brain.

When the variance of both certainty estimation methods
(PTA and PAT+fuzzy) were calculated, we obtained values
of 7.5 and 3.2, respectively. Thus, a direct consequence of
the fuzzy aided system is that the variance of the estimation
is reduced by approximately 50%.

6. CONCLUSIONS

A fuzzy inference algorithm that can be applied to estimate
the certainty of different tracking schemes for DT-MR im-
ages has been developed and tested. The fuzzy engine was
first derived from the text-based MHT strategy since fuzzy
systems are closely connected to the MHT approach. A pre-
viously developed probabilistic tracking algorithm has been
used to evaluate this fuzzy procedure [9]. Numerical sim-
ulations have been performed using both synthetic and real
DT-MR images. In both cases, the certainty about the per-
formance reliability was increased when the fuzzy system is
used, providing, this way, more precise estimates of the prob-
ability of neuronal fiber connections.
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