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ABSTRACT 

This paper studies the effectiveness of speech contents for detecting 

clinical depression in adolescents. We also evaluated the perform-

ances of acoustic features such as Mel frequency cepstral coeffi-

cients (MFCC), short time energy (Energy), zero crossing rate 

(ZCR) and Teager energy operator (TEO) using Gaussian mixture 

models for depression detection. A clinical data set of speech from 

139 adolescents, including 68 (49 girls and 19 boys) diagnosed as 

clinically depressed, was used in the classification experiments. 

Each subject participated in three 20 minutes interactions. The 

classification was first performed using the whole data and a 

smaller sub-set of data selected based on behavioural constructs 

defined by trained human observers (data with constructs). In the 

experiments, we found that the MFCC+Energy feature out per-

formed the TEO feature.  The results indicated that using the con-

struct based speech contents in the problem solving interactions 

(PSI) session improved the detection accuracy. Accuracy was fur-

ther improved by 4% when the gender dependent depression mod-

elling technique was adopted.  By using construct based PSI ses-

sion speech content, gender based depression models achieved 

65.1% average detection accuracy. Also, for both types of features 

(TEO and MFCC), the correct classification rates were higher for 

female speakers than for male speakers. 

1. INTRODUCTION 

The inability to diagnose clinical depression early on in adolescents 

aged 13-20 years, can have a serious impact on suffers, including 

the risk for suicidal ideation. Strong evidence demonstrates that 

most suicides are linked to depressive disorders and symptomatol-

ogy [13].Teen suicide has become a significant public health con-

cern, seeing as how it is one of the leading causes of death in Aus-

tralia. Suicide rates among Australian adolescents have increased 

threefold from the 1960s to the 1990s. Although recent statistics 

(2006) have shown a dip in the number of youth suicides, it still 

ranks suicide as the 15th leading cause of death in Australia [1]. 

Depressed individuals suffer from varying degrees of psychomotor 

retardation (slowness) or agitation. Sufferers of depression experi-

ence prolonged periods of hopelessness, anger, guilt, desperation 

and loneliness along with, as noted above, a tendency to suicidal 

thoughts.  Dealing with the issue of depression poses a complex and 

challenging task due to the many potential psychological variables. 

In an effort to understand and prevent depression and suicide in 

adolescents, psychologists have carried out studies based on demo-

graphic profiles, family self-reports and observational data of a pa-

tient in clinical interviews. From these interviews, it has been con-

sistently reported that clinicians observe that the speech of a de-

pressed patient is slow, uniform, monotonous and expressionless 

with the patient having the fear of expressing him or herself [12]. 

During listening tests [4], listeners could perceive differences in 

pitch, loudness, speaking rate and articulation of speech recorded 

from depressed patients before and after treatment. This has led to 

considerable amount of interest in combining psychological assess-

ments with acoustic speech analysis to objectively measure behav-

ioural changes in a patient over time. Any improvement in objective 

diagnosis would translate into relevant clinical applications includ-

ing the early detection of depressive condition and the evaluation of 

treatment outcome. Therefore, this is the basis of our research. In 

turn, this could lead to the possibility of developing a computerized 

healthcare system that would assist mental health professionals by 

providing early warning-signs indicating whether a patient is likely 

to be depressed through their voice patterns.  

As early as the 19th century, attempts have been made to analyse 

vocal acoustic parameters by finding potential indicators of depres-

sion [16]. Since then, there have been numerous efforts to empiri-

cally determine the physical and mental health of individuals 

through their vocal speech patterns.  In fact, designing an automatic 

computerized system for depressive screening in speech is not a 

novel idea [21]. Currently however, there has not been any comput-

erized vocal diagnosis tools that can provide accurate results to as-

sist psychologists in detecting clinical depression among adoles-

cents. The most commonly studied parameters in speaker charac-

terization pertinent to the literature have been the measures relating 

to prosodic (i.e. Fundamental frequency (F0), speaking rate, energy) 

and the vocal tract (i.e. formants) [6], [11], [20], [14], [5], [15].  This 

is due to the fact that they have the closest relation to human percep-

tion [11]. Unfortunately, to make issues more complicated, there 

have been discrepancies in results presented from one researcher to 

another. Although most researchers [20], [14] found that F0 corre-

lated well with depression, France et al. (2000) [5] experiments on 

severely depressed and near-term suicidal subjects with gender 

separation found that F0 was an ineffective discriminator for both 

depressed male and female patients. Instead, formants and power 

spectral density measurements proved to be the better discrimina-

tors. This could be due to the many different variables such as re-

cording conditions, number of participants and the level of partici-

pant’s depression ratings.  

Performing multivariate analyses on vocal features extracted 

from a patient’s speech has been the main focus in recent studies in 

order to increase the accuracy of classification in clinical depression 

[5], [15], [11]. Highest classification accuracy achieved up to date 

has been presented by Moore et al. (2008) [11]. On a sample data 

size of 33 subjects (15 major depress, 18 controls), Moore adopted a 

feature selection strategy by adding one feature at a time to find the 

highest classification accuracy through quadratic discriminant 

analysis and obtained a classification accuracy of 90% and 96% 

with the combination of prosodic and glottal features for male and 

female patients respectively. However, the sample data size for the 

experiments conducted may be deemed too small for creating statis-

tically significant results for clinical application. 
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In this paper, we tested the use of features such as mel frequency 

cepstral coefficients (MFCC), energy, zero-crossing, delta MFCCs 

and delta-delta- MFCCs in automatic detection of clinical depres-

sion in adolescents. Although MFCCs have been widely used in 

speaker recognition, limited studies have been performed in the area 

of stress or clinical depression classification. It was shown that 

stress classification using these features provided better classifica-

tion accuracy in text-dependent models [22]. For comparison pur-

poses, Teager energy operators (TEO) which has shown good accu-

racy and reliability in emotional stress classification is also ex-

plored.  

2. ANALYSIS METHOD 

Figure 1 depicts the proposed framework that models the contents of 

depressed and control subjects. For both training and testing phases, 

we first detect the voiced frames in the pre-processing stage. Sec-

ondly, MFCC feature coefficients are extracted from these voiced 

frames. In the training phase, two Gaussian mixture models 

(GMMs) are then trained using the extracted features belonging to 

depressed and control subjects. 
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Figure 1: Modelling of depressed and control subjects. 

In the testing phase, the decision on whether the subject is depressed 

or control is taken when more than 50% of utterances from the sub-

ject belongs to that particular class. The following subsections ex-

plain the pre-processing, feature extraction and depressed/control 

content modelling steps. 

 

2.1 Pre-Processing 
We use linear prediction based technique explained in [3] to detect 

voiced regions. First, the speech signal is normalized based on the 

maximum amplitude and then segmented into 25msec, 50% over-

lapped frames using a rectangular window. Then 13th order linear 

prediction coefficients (LPCs) are calculated per frame. Energy of 

the prediction error and the first reflection coefficient r1 are calcu-

lated and a threshold is empirically set to detect voiced frames.  

∑

∑

=

−

=

+

=
N

n

N

n

nsns
N

nsns
N

r

1

1

1

1

)()(
1

)1()(
1

 (1) 

Eq. (1) explains the calculation of the first reflection coefficient r1, 

where N is the number of samples in the analysis frame and s(n) is 

the speech sample. Silence frames which are considered as un-

voiced, are also removed in the pre-processing. Detected voiced 

frames are then concatenated for feature extraction. 

 
2.2 Feature Extraction 
Mel frequency cepstral coefficients (MFCC) which have been effec-

tively used for speech content characterization are based on the 

linear speech production models which assume that airflow propa-

gates in the vocal tract as a linear plane wave. According to Teager 

[19] on the other hand, this assumption may not hold since the true 

source of sound production is actually coming from the vortex-flow 

interactions that are non-linear. For example, in stress speech, the 

fast air flow causes vortices to be located near the false vocal fold 

area and this provides additional excitation signals other than pitch 

[22], [19]. Thus, we further investigate both MFCCs and TEOs 

strength for modelling clinical depression. The following subsec-

tions briefly discuss the computation of MFCC and TEO. 

 

2.2.1 Mel Frequency Cepstral Coefficients 

The mel frequency cepstral coefficients have been widely used in 

speech processing. A mel is a unit of measure of perceived pitch. It 

does not correspond linearly to the physical frequency of the tone, 

as the human auditory system apparently does not perceive the pitch 

in a linear manner. The relationship between linear frequency scale 

(Flinear) and the log frequency scale (Flog) is explained in Eq. (2) 

where C is a scaling factor which controls the span of Log10 fre-

quency scale. When C is set to 700, the log frequency scale then 

becomes mel scale or (Flog = Fmel). 
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To calculate the positions of filters to cover spectral regions, first 

filters are linearly positioned in the mel frequency scale and trans-

formed back to linear frequency scale. Using this filter bank we 

compute the MFCCs. The output Y(i) of the ith filter in the linear 

frequency scale is defined in Eq. (3), where S(.) is the signal spec-

trum, Hi(.) is the ith  filter, and mi and ni are boundaries of the ith 

filter. 
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Eq. (4) describes the computation of nth MFCC, ki is the center fre-

quency of the ith filter, and N and Ncb are number of frequency sam-

ple points and number of filters, respectively. 
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2.2.2 Delta and Delta-Delta-MFCC  

Another popular feature arrangement which can capture the tempo-

ral information is the inclusion of the first and second order deriva-

tives (Delta and Delta-Delta) of MFCCs combined with the original 

MFCCs. The Delta and the Delta-Delta MFCCs are calculated using 

the following formula: 
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where dt is a delta coefficient at time t and it is computed in terms of 

the corresponding static coefficients from ct-Θ to ct+Θ. The Θ is the 

size of the window which provides information about spectral 

changes in the neighbouring frames respective to current frame ct. 

The same formula is applied to the Delta coefficients to obtain the 

Delta-Delta coefficients. For our experiments, the window size is set 

Θ=2 to obtain both Delta and Delta-Delta coefficients.  

 

2.2.3 Energy and Zero-Crossing 

The logarithmic of short-term energy Es (m) and the number of zero 

crossings Zs (number of times the signal sequence changes sign), 

within a frame are also important features in speech analysis which 

can be easily obtained using the following two formulas: 
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Hence, we add both short-term log energy and zero-crossing as 

extra features to MFCCs. 

 

2.3.1 Teager Energy Operator (TEO) 

Modelling the time-varying vortex flow is a challenging task and 

Teager [19] devised a simple algorithm which uses a non-linear 

energy-tracking operator called the Teager energy operator (TEO). 

The Teager energy operator (TEO) in a discrete form [9] is defined 

as 
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where Ψ[.] is the Teager energy operator (TEO) and x(n) is the 

sampled speech signal. 

 

2.3.2 TEO Critical Band Based Autocorrelation Envelope (TEO-

CB-Auto-Env) 

As proposed by Zhou [22], it is more convenient to break the band-

width of the speech spectrum into smaller bands (also known as 

critical bands) before calculating the TEO profile (Eq.8) for each 

independent band. Gabor bandpass filter [10] as shown in Figure 

2(b) is implemented to separate voiced utterances into 16 critical 

bands. The TEO profile is then calculated for each of the bands. The 

Gabor-filtered TEO stream is then segmented into frames. The 

autocorrelation of the TEO output is computed and the area under 

the normalized autocorrelation envelope is calculated to give the 

TEO-CB-Auto-Env features. We follow the same frequency range 

for the 16 critical bands as in [22]. As an example, Figure 2(c) 

shows the TEO profile waveform from critical band 9 (between 

1080 Hz -1270 Hz) and figure 2(d) shows the normalized autocorre-

lation of one frame from the TEO profile output waveform. 
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Figure 2: TEO-Auto-Env feature extraction for Critical Band 9. (a) 

Voiced part of utterance (b) Gabor band-pass filter (c) TEO profile 

after Gabor band-pass filter (d) TEO autocorrelation of one frame. 

2.3 Gaussian Mixture Model (GMM) 
Gaussian mixture model has been effectively used in speech infor-

mation modelling tasks such as speaker recognition and spoken 

languages identification. A Gaussian mixture model is a simple 

linear superposition of Gaussian components, aimed at providing a 

richer class of density models than a single Gaussian as given in Eq. 

(9), where x is a D- dimensional random vector (i.e. X={x1,x2…xN}) 

and K is the number of Gaussian densities. Each Gaussian density 

N(x|µk, ∑k) is called a component of the mixture and has its own 

mean µk and covariance ∑k. 
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The parameters πk are called mixing coefficients. If we integrate 

both sides of Eq. (9) with respect to x, and note that both p(x) and 

the individual Gaussian components are normalized, we will obtain 

the following expression: 
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In the training process, the maximum likelihood (ML) estimation 

used by the GMM shown in Figure 1 is used to compute model 

parameters which maximize the likelihood of GMM using expecta-

tion-maximization algorithm for the given training data. Each model 

is trained with 3 iterations every time the number of Gaussian mix-

ture components is increased. Diagonal covariance matrices are 

used instead of full covariance for computational efficiency pur-

poses. We use HTK toolbox1 to implement the Gaussian mixture 

models in the classification of clinical depression. 

3. EXPERIMENTS & RESULTS 

The database described here was obtained as a result of collabora-

tion with the Oregon Research Institute, USA (ORI). This database 

consists of video and audio recordings of 139 adolescents (93 girls 

and 46 boys) with their respective parents participating in three 

different types of 20-min interactions: 1) Event planning interaction 

(EPI), 2) Problem-solving interaction (PSI) and 3) Family consensus 

interaction (FCI). Through self-report and interview measures of the 

adolescence’s depression evaluated by research staff from ORI [17], 

68 (49 girls and 19 boys) were diagnosed as suffering from Major 

Depressive Disorder (MDD), and the remainder (44 girls and 27 

boys) were healthy controls (i.e., no current or lifetime history of 

MDD). The depressed and healthy groups were matched on their 

demographic data which included their sex, race and age. The ado-

lescents were between 12 and 19 years old. As will be discussed in 

the later part of this section, the PSI, which shows higher separation 

results over the other interactions or combined interactions, is de-

scribed here in detail. A more detailed description on the other in-

teractions can be found at [7]. Upon starting the interaction for the 

PSIs, parents and adolescents mutually agreed on two topics of dis-

agreement that were completed from a questionnaire. Each family 

unit was then asked to discuss the problems, one at a time, and try to 

come to some resolution that was mutually agreeable to all parties. 

Each problem was discussed for 10 minutes, resulting in a total of 

20 minutes of observational data for each family. The video re-

cordings were manually coded by psychologists using the Living-

In-Family-Environments (LIFE) coding system. The LIFE coding 

system [7], [8] is an event-based coding system recorded in real-

time and was developed to accurately capture specific behaviours 

representative of depressed individuals and that would effectively 

discriminate between their behaviour and those of non depressed 

individuals. It is designed to annotate the specific timeline of vari-

ous emotions (called affect codes) and verbal components (called 

content codes) displayed by the subject’s speech during the whole 

course of the interaction. The LIFE code is composed of 27 content 

codes and 10 affect codes. The audio segments displaying these 

emotions and verbal content are extracted from the video recordings 

based on the time annotations. The average speech utterance ex-

tracted is around 2 to 3 seconds long and its original sampling rate is 

decimated by a factor of 4. This is done by first using an anti-

aliasing filter, followed by downsampling the audio signal from 

44.1 kHz to 11 kHz sampling rate. For our experiments, the audio 

was converted from stereo to mono channel format.  

The speech corpus was extracted in two alternative ways:  

• Annotating the separate interactions and combined inter-

actions without using any behavioural constructs 

• Annotating the separate interactions and combined inter-

action using behavioural constructs 

In the first annotation method, interactions prepared without using 

any constructs can be described as low-level coding. This is where 

                                                           
1 http://htk.eng.cam.ac.uk/ 
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all content codes with their respective affect codes are extracted. 

Conversely, for the second annotation method, interactions prepared 

based on behavioural constructs can be described as high-level cod-

ing. The constructs methodology was developed by behavioural 

researchers from ORI [8]. The constructs were created by pairing up 

selected content codes and affect codes into four main classes that 

represent aggressive, depressive, facilitative, and problem solving 

behaviours. The following describes the experimental setup in mod-

elling adolescents’ depression. 

 

3.1 Feature Selection 

It was found in the literature that the Mel frequency cepstral coeffi-

cient (MFCC) and Teager Energy Operator (TEO) features per-

formed well characterizing depressed speech contents. Thus, its 

strengths were also examined in our experiments. Due to high per-

formances in modelling speech contents, GMM were employed for 

modelling depressed and control classes. First, optimization of the 

parameters in the MFCC was carried out to maximise the detection 

accuracy of depressed and control subjects. The correct classifica-

tion accuracy was plotted as a function of 1) number of filters (from 

10 to 60 with a step size of 10; and 2) number of coefficients (from 

6 to 30 with a step size of 6). Based on these plots we selected the 

number of filters and the number of coefficients that were giving the 

highest value of classification accuracy. For the MFCC parameter 

optimization, half of the utterances per subject (10 min of speech) 

were used and divided equally for training 1024 Gaussian mixtures 

by iteratively increasing the number of Gaussian mixture compo-

nents by a factor of two (i.e. 2, 4, 8, 16, 32)  for depressed and con-

trol classes. It was found that 30 filters in the filter bank and 12 

coefficients maximized the correct classification accuracy. Opti-

mized MFCC parameters and full speech corpus were then used in 

further experiments. Around 50% of the total number of subjects 

containing 33 depressed (23 girls and 10 boys) and 34 control sub-

jects (21 girls and 13 boys) were used as our testing data. Subject 

utterances were tested based on the length of the utterances ex-

tracted from the behavioural construct coding. Additional features 

such as short-term energy and zero-crossing rates were then added 

to observe if they would introduce additional improvements in the 

correct classification rates. Although it was found that adding zero-

crossing to MFCCs (with energy included) did not improve results, 

adding short-term energy alone improved the classification rate by 

2%. Incorporating velocity (delta) and acceleration (delta-delta) 

coefficients to the original 13 coefficients (MFCCs+Energy) also 

improved the correct classification accuracy by around 3%.   Thus 

we combined both the MFCC and Energy features and computed 39 

coefficients per feature vector by including both velocity and accel-

eration coefficients.  

 

3.2 Content based depression detection  

Experiments based on increasing the number of Gaussians by a 

factor of two was carried out using data from separate interactions 

(EPI, PSI and FCI) and combined interactions (EPI+PSI+FCI) 

without and with behavioural construct annotations. Table 1 sum-

marizes the average classification accuracy (subject level) which 

was cross validated using 4 turns of training and testing data sets for 

depressed and control classes. Results in the first row (EXP 1) ex-

plain the rate of correct classification accuracies for all combined 

interactions (EPI+PSI+FCI) when gender information is not taken 

into consideration at modelling level, whereas the results in EXP 2, 

were based on the gender based models. EXP 3 and EXP 4 presents 

the same format as described in EXP1 and EXP 2 but this time re-

sults were based on each individual session (EPI, PSI, and FCI). 

EXP 1 to EXP 4 didn’t select the utterances based on the behav-

ioural constructs for training and testing. However, results in both 

EXP 5 and EXP 6 were based on the behavioural construct anno-

tated utterances. It was initially expected that higher classification 

rates should be given when using the data without behavioural con-

structs as it contained all the affect and content codes which reflects 

detailed information about the mental status of the subjects. How-

ever, it was found that the behavioural construct-based reduction of 

the data using problem solving interaction (PSI) produced higher 

classification rates (see EXP 5 and EXP 6), which suggests the im-

portance in using only certain emotion based speech contents in 

detecting depression. This is consistent with psychologist evalua-

tions in [17], that calculate single statistical measures such as mean, 

variance and z-scores on the timing durations of PSI of each subject 

using the behavioural construct based methodology. This finding is 

predictable given that the PSI is the interaction task that is most 

likely to elicit conflictual interactions, and that many previous stud-

ies have shown that levels of conflict in family environments are a 

particularly strong correlate of adolescent’s depression [18]. As such 

it is not unexpected that the interaction task that elicits the most 

conlflictual interactions is the one that most accurately distinguishes 

the depressed and control participants.   

Table 1: Correct classification rates using MFCC + energy for dif-

ferent interactions and combined interactions. 

 

From the results in EXP 5 and EXP 6, we found ~4% accuracy im-

provement with the gender based depression modelling in PSI ses-

sion. This clearly indicates presence of gender oriented differences 

in the complexity of depression symptoms which is consistent with 

conclusions presented in [2] & [17]. Since PSI was giving relatively 

higher results for EXP5 and EXP6, the two experiments were re-

simulated but this time we iteratively increased the number of Gaus-

sian mixtures sequentially ranging from 1 to 200. This was done to 

see if further improvement in classification accuracy could be 

achieved. As shown in table 2, by sequentially increasing the num-

ber of Gaussian mixtures, it gave a ~5% increase in average classifi-

cation rate for the gender dependent model as compared to EXP6. In 

both of Tables 2&3, adolescent females performed better in detect-

ing depression over their male counterparts when using 

MFCC+Energy features and TEO based features, with an improve 

accuracy of ~5% and ~17% respectively. This could be due to the 

fact that psychologists have observed that female adolescents ex-

perience substantially higher levels of depressive symptoms than do 

males [2].  

Table 2: Correct classification results – MFCC + Energy features. 

 
 

Due to previously reported higher performances, the performances 

of MFCC+Energy feature setup with TEO based feature were com-

pared. Table 3 show the classification accuracies when using the 

TEO based feature as described in Section 2.3.1. The TEO based 

feature was only applied to the data with behavioural constructs 

since as it was shown in Tables 1&2 that the behavioural construct 
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data yields in general higher classification rates. When comparing 

Tables 2&3, it can be seen that in both gender independent and gen-

der dependent models, the TEO-based feature provided slightly 

lower classification results when compared with the MFCC+Energy 

feature setup. In the case of female subjects the MFCC+Energy 

feature provided 4-5% higher accuracy, and in the case of male 

subjects, it gave up to 10% higher accuracy. However, in the gender 

independent case, the difference between TEO and MFCC+Energy 

performance was very small (1%). 

Table 3: Correct classification results - TEO based features. 

 
 

The reason for the comparatively lower performance in the TEO is 

due to the fact that the speech utterances are heavily corrupted with 

crosstalk of parents, resulting in errors in calculation of the vortex 

flow of subject’s speech.  

4. DISCUSSION & CONCLUSION  

In this paper we examine the effectiveness of speech contents of 

different subject interactions and acoustic features for clinical de-

pression detection. The MFCC + short time energy coefficients with 

their velocity and acceleration coefficients out performed the Teager 

energy operator (TEO) feature in the detection. The content specific 

depression detection experiments indicated that selecting the behav-

ioural construct based speech contents from the problem solving 

interactions (PSI) session instead of event planning interaction (EPI) 

and family consensus interaction (FCI) gave higher detection rates. 

Average detection accuracy further improved by 4% when gender 

based depression modelling technique is adopted for the behavioural 

construct based PSI speech contents. We achieved 65.1% average 

detection accuracy using the gender based depression models 

trained using the MFCC+ energy coefficients with their velocity and 

acceleration coefficients extracted from the behavioural construct 

based PSI speech content.  

We observed that subject’s speech utterances are heavily cor-

rupted by the crosstalk’s of parents, which we believe is the main 

reason for the poor performances of both the features and the GMM. 

Thus in the future experiments, we plan to implement techniques to 

suppress the parent’s crosstalk and enhance the subjects speech in 

the utterances. In the future, we will also, perform classification 

experiments using longer speech utterances (i.e. 30 or 60 seconds) 

and test larger variety of acoustic features and modelling techniques.   
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