
CONTINUOUS NON-NEGATIVE MATRIX FACTORIZATION FOR
TIME-DEPENDENT DATA

Lars Omlor a, Jean-Jacques Slotine b

a Department of Cognitive Neurology, University of Tübingen, Wilhelmstr. 7 ,72074 Tübingen, Germany
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ABSTRACT
In many signal processing applications such as image analy-
sis or spectral decomposition, non-negativity constrains are
necessary to provide a physical reasonable interpretation.
This constraint is exploited by non-negative matrix factor-
ization (NMF) methods. The goal of NMF is to find low
rank matrices A ≥ 0 and B ≥ 0 such that the positive data
matrix X can be approximated by AB ≈ X . Most algorithms
for this type of factorization are discrete-step iterative op-
timization procedures based on gradient descent or Quasi-
Newton methods. Here we propose a continuous-time ver-
sion of NMF based on dynamical systems with positive solu-
tions, which allows time-dependent cost functions, e.g. due
to time-dependent data.

1. INTRODUCTION

In many applications, such as image-processing [5] or
spectral-deconvolution [6], the requirement that the solutions
be non-negative has lead to the development of multiplicative
update rules for non-negative constraint optimization. Lee
and Seung [9] used these rules to decompose images (pic-
tures of faces) X ≈ AB into parts A (lips, eyes, etc.) and the
corresponding mixing operator B, by alternating updates for
the matrices A and B. This approach has been shown recently
to be useful for many applications, such as blind feature ex-
traction [9] or dimension reduction [13]. For minimizing the
constrained squared Euclidean distance:

E(X ,AB) = ‖X−AB‖2 such thatai j ≥ 0 , b jk ≥ 0 ∀i, j,k
(1)

the multiplicative algorithm takes the form:

ai j ← ai j

(
XBT

ABBT

)

i j
, b jk ← b jk

(
AT X

AT AB

)

jk
(2)

Various improvements or alternatives to this simple gradi-
ent descent algorithm have been put forward [2], in order to
speed up the slow convergence and to avoid the often occur-
ring slow progress zig-zag path of the optimization in flat
valleys of the cost function (called zigzagging or jamming).
Implicit in these approaches to non-negative matrix factor-
ization is the assumption of a constant (static) data matrix
X . The issue of time-dependent data is usually treated by
increasing the dimensionality of X , either by arranging the
data observed at different time-points X(ti) as rows of X , or
by treating each time as independent element constituting a
single data point (adding time to the columns of X). This

treatment of time has three major drawbacks. First, the data
for all time-points has to be known in advance, making this
kind of algorithm unsuitable for online learning. Second, in-
creasing the dimensionality of X is obviously only feasible
for a moderate number of time points. Finally, adding di-
mensions to X neglects temporal dependencies of the data
such as causality.
To address these problems we propose here a time-dependent
non-negative model:

X(t)≈ A(t) ·B(t) with ai j(t)≥ 0 , b jk(t)≥ 0 ∀t

which minimizes a differentiable time-dependent cost func-
tion E(t,X(t),A(t),B(t)) ≥ 0. This approach not only en-
compasses the classical algorithm but also enables NMF to
factorize data streams online, e.g. from audio or video. The
parameters A(t),B(t) are optimized using simple dynamical
systems based on gradient descent and projected gradient de-
scent. This dynamical system approach allows the use of
NMF as a network element in multilayered structures, which
admits feedback in the form of a time-dependent cost. The
performance of the method is illustrated in numerical simu-
lations based on two different data sets. The first data set,
composed of unstructured random matrices, is used to com-
pare the convergence rates of different implementations of
time-dependent NMF. The second, more specific data set, is
composed of music sequences, as audio separation is one of
the main application fields of blind source separation meth-
ods.

2. DYNAMICAL SYSTEMS AND OPTIMIZATION

One of the most popular methods for minimizing an arbitrary
cost function E(x)≥ 0 is discrete gradient descent, given by
the iterative algorithm:

xt+1 = xt −η∇E(xt) (3)

Here η ≥ 0 denotes the step length taken into the direction
of the gradient ∇E(xt) of the cost E at point xt . Taking the
limit in the discrete method leads to the continuous-time gra-
dient descent method [1], described by the ordinary differen-
tial equation (ODE):

dx(t)
dt

= ẋ(t) =−η∇E
(
x(t)

)
(4)

The solution of this equation is a function x(t) along which
the cost E decreases the fastest:

dE
(
x(t)

)

dt
= Ė(t) =

〈
∇E

(
x(t)

)
, ẋ(t)

〉
=−η‖∇E

(
x(t)

)‖2

(5)
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Thus, following the smooth solution x(t) leads to a station-
ary point of E. The idea can be adjusted for constrained op-
timization, leading to the projected gradient descent method:

ẋ(t) = PC

(
x(t)−η∇E

(
x(t)

))− x(t) (6)

where PC denotes the projection onto the set of constraints C
(e.g. PC(x(t)) = max(x(t),0)) =: (x(t))+ for C =R+).
One of the major advantages of this continuous treatment is
the fact that these methods can be easily adjusted to the case
of (explicit or implicit) time-dependent cost functions E =
E(t,x).

2.1 Continuous gradient descent for NMF
In the case of classical NMF, neither the cost function E nor
the data X are seen as time dependent. However the fac-
torization parameters A,B can be obtained as limit points of
trajectories A(t) = (ai j(t))i j,B(t) = (b jk(t)) jk satisfying the
ODE (4):

ȧi j(t) =−ηi j
∂E

∂ai j(t)
, ḃ jk(t) =−η̃ jk

∂E
∂b jk(t)

(7)

In the following the explicit notation of time dependency
ai j(t),b jk(t) is dropped, as the variables ai j,b jk are always
assumed to be possibly dependent on time. The idea behind
the multiplicative update rules (2) is to choose special step
lengths (gains) ηi j, η̃ jk equal to the diagonally rescaled vari-
ables [9]. In particular this implies that independent of E the
step lengths have the form ηi j = ai jη

′
i j, η̃ jk = bi jη̃

′
jk with ar-

bitrary rests η ′
i j, η̃

′
jk ≥ 0. For such a choice of parameters

it is a priori unclear whether the new step lengths are posi-
tive (ai j,bi j could assume negative values). Yet assuming the
special step lengths, we get for ai j (and similarly for b jk):

ȧi j =−ai jη
′
i j

∂E
∂ai j

⇒
ai j 6=0

ȧi j

ai j
=−η

′
i j

∂E
∂ai j

⇒ ai j =±ai j(t0)exp
(∫ t

t0
−η

′
i j

∂E
∂ai j

)
(8)

Thus, if ai j(t0) = 0,b jk(t0) = 0, then the solution vanishes for
all t > t0. As any solution is continuous, non-negative initial-
values guaranty ai j ≥ 0 and b jk ≥ 0. It follows from equation
(5) that the total time derivative Ė ≤ 0, and thus system (7)
indeed minimizes the cost E.
As an illustration, consider for instance Euclidean cost (1):

E = ‖X −A(t)B(t)‖2 ⇒ ∂E
∂A(t)

= 2
(
A(t)B(t)BT (t)−XBT (t)

)

To obtain the full diagonally rescaled step length we set η ′
i j =

1
(ABBT )i j(t)

≥ 0 (the equation for ḃ jk is analog)

ȧi j =− ai j

(ABBT )i j(t)
∂E
∂ai j

=−ai j +ai j ∗
(

XBT (t)
A(t)B(t)BT (t)

)

i j
(9)

2.1.1 Explicit time-dependent cost function

The most general case of cost function E we consider here
can be both explicitly dependent on time, and implicitly
dependent on time due to time dependent data X = X(t).
For notational convenience the implicit dependency can be
incorporated into the explicit time dependency, i.e., E =
E

(
t,X(t),A(t)B(t)

)
=: E

(
t,A(t)B(t)

)
. In this notation the

partial derivative ∂E
∂ t denotes the partial derivative of E with

respect to the first variable (time) and thus is a composite
term including the derivative with respect to the data. Now
considering the total time-derivative Ė = dE

dt :

Ė =
∂E
∂ t

+

[
∑
i j

(
∂ E
∂ai j

)
ȧi j +∑

jk

(
∂E

∂b jk

)
ḃ jk

]

it is clear that the simple gradient descent (7) needs to be
adjusted, since only the last term in the brackets can be guar-
anteed to be negative. However equation (5) implies that the
absolute value of ϑ is dependent on the chosen step size η .
Thus it is possible to change η exactly in a way that the new
negative term additively compensates −| ∂ E

∂ t |. This adjusted
system is given by the formulas:

ȧi j =−ai j
∂E
∂ai j


ηi j +

(
( ∂E

∂ t )+ +βE
)

∑i j

(
∂E
∂ai j

)2
ai j +∑ jk

(
∂E

∂b jk

)2
b jk + ε




ḃ jk =−b jk
∂E

∂b jk


η̃ jk +

(
( ∂E

∂ t )+ +βE
)

∑i j

(
∂E
∂ai j

)2
ai j +∑ jk

(
∂E

∂b jk

)2
b jk + ε




(10)

The parameter ε is a regularization term preventing a division
by zero in the case of zero denominator above. In practice
the influence of noise prevents the gradients ∂E

∂ai j
and ∂E

∂b jk

from vanishing. Furthermore A,B are only zero if X = 0 or
A0 = 0,B0 = 0. Thus ε can usually be chosen very small,
so it has only negligible influence on the convergence. Since
the step size in (10) was exactly chosen to compensate the
partial time-derivative, negative total time-derivative of the
cost function Ė is now easy to prove in the limit ε = 0:

Ė =
∂E
∂ t
−∑

i j
ηi j

(
∂E
∂ai j

)2

ai j−∑
jk

η̃ jk

(
∂E

∂b jk

)2

b jk

− (
∂E
∂ t

)+−βE ≤−βE (11)

Note that the solutions of the modified system (10) are also
positive, which follows from the same argument as for the
original system (7). Inequality (11) implies that (disregard-
ing numerical difficulties) in theory, the cost function should
decrease exponentially with exponent β , which is the reason
this parameter was introduced.

2.2 Projected gradient descent

Due to the inherent non-negativity constraint in NMF it
seems more natural to use the projected gradient (6) instead
of the simple gradient method. This replaces the differential
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equations (7,8) with the new system:

ȧi j =
(

ai j−µi j
∂E
∂ai j

)

+
−ai j

ḃ jk =
(

b jk−ν jk
∂E

∂b jk

)

+
−b jk (12)

Going back to the example of Euclidean cost (1), the same
choice of step lengths µi j = ai j

(ABBT )i j
as before results in:

ȧi j =

(
ai j ∗

(
XBT (t)

A(t)B(t)BT (t)

)

i j

)

+

−ai j

Thus, if the solution of the projected gradient system is pos-
itive, this coincides with the result of the simple gradient de-
scent (9). Thus the projected gradient can indeed be seen as
the more general method. The positivity of the solution of
(12) follows immediately from

ȧi j ≥−ai j , ḃ jk ≥−b jk.

Similar to the gradient descent case this implies Ė ≤ 0, as
can be seen from:

(
∂E
∂ai j

)
ȧi j =




−µi j

(
∂E
∂ ai j

)2
≤ 0 if µi j

(
∂E
∂ ai j

)
≤ ai j

−ai j

(
∂E
∂ai j

)
≤ 0 if 0≤ ai j ≤ µi j

(
∂E
∂ai j

)

and the analogous computation for
(

∂ E
∂b jk

)
ḃ jk.

2.2.1 Explicit time-dependent cost function

For explicit time-dependent cost functions the projected gra-
dient method can be adjusted in the same manner as the gra-
dient descent. In order to prove that the adjusted (increased)
step sizes:

µ̃i j = µ0 +
( ∂E

∂ t )+

∑
∂E

∂ai j
≤0

(
∂ E
∂ai j

)2
+ ∑

∂E
∂b jk

≤0

(
∂ E

∂b jk

)2
+ ε

ν̃ jk = ν0 +
( ∂E

∂ t )+

∑
∂E

∂ai j
≤0

(
∂E
∂ai j

)2
+ ∑

∂E
∂b jk

≤0

(
∂E

∂b jk

)2
+ ε

(13)

compensate the term ∂ E
∂ t we need to define the following sets

of indices:

I1 :=
{

i j | 0≤ µ̃i j

(
∂E
∂ai j

)
≤ ai j

}

I2 :=
{

jk | 0≤ ν̃i j

(
∂E

∂b jk

)
≤ b jk

}

I3 :=
{

i j | ∂ E
∂ai j

≤ 0
}

, I4 :=
{

jk | ∂ E
∂b jk

≤ 0
}

I5 :=
{

i j | ai j ≤ µ̃i j

(
∂E
∂ai j

)}
, I6 :=

{
jk | b jk ≤ ν̃ jk

(
∂ E

∂b jk

)}

Now

Ė =
∂E
∂ t

+∑
i j

(
∂E
∂ai j

)
ȧi j +∑

jk

(
∂E

∂b jk

)
ḃ jk

=
∂ E
∂ t
−∑

I1

µ̃i j

(
∂E
∂ai j

)2
−∑

I2

ν̃ jk

(
∂ E

∂b jk

)2
−∑

I5

ai j

(
∂E
∂ai j

)

−∑
I6

b jk

(
∂E

∂b jk

)
−∑

I3

µ̃0

(
∂E
∂ai j

)2
−∑

I3

ν̃0

(
∂E

∂b jk

)2

− (
∂ E
∂ t

)+ ≤ 0.

The cumbersome splitting in these subsets is necessary as
only I3 and I4 are independent of µ̃i j and ν̃ jk. Thus the new
step sizes are larger than the minimal step sizes compensat-
ing ∂E

∂ t .

3. NUMERICAL SIMULATIONS

For the numerical solution of ODEs quite a zoo of different
methods are available [4], depending on the special type of
equation and the goal accuracy. One of the most straight-
forward methods is the simple Euler approximation, which
replaces the differential in (4,6) with the finite difference
quotient, resulting in the discrete (projected) gradient de-
scent (3). Applying this approximation to the Euclidean
cost example (9) results in the classical iterative NMF up-
date rules (2), with the sole difference that A,B are updated
as one block instead of alternatingly. This use of the discrete
NMF algorithm provides a baseline in the numerical exper-
iments, as it (almost) coincides with the classical algorithm.
Since the Euler method is known to be inaccurate and nu-
merically unstable, for all other simulations the four-point
Adams-Bashforth method with variable step size was used
[4]. If only the limit point of the optimization procedure is of
interest, faster integration schemes can be employed [3].
The first test data set consists of twenty, fast changing un-
structured nonnegative matrices X ∈ R100×200

+ , i.e. X was
constructed as the product of uniformly distributed random
positive matrices A ∈ R100×3

+ and B ∈ R3×200
+ times a fast

changing sinusoid:

X(t) =
(
1.5+ sin(t)

)
X =

(
1.5+ sin(t)

)
A∗B

The second and third data set consists of spectrograms:

Sω(t) =
∣∣∣∣
∫

e−2πitω s(t ′)h(t ′− t)dt ′
∣∣∣∣
2

computed from musical instrument recordings s(t ′) taken
from the music database described in [16], which mainly
consists of sound samples excerpted from classical music CD
recordings. For a short window the spectrogram Sω(t) can
be interpreted as the vector of local frequency intensities at
time t, and thus is numerically a time-dependent vector with
nonnegative entries. The spectrogram is computed from the
mean of both stereo-channels with a short hamming-window
h of length approximately 100ms. All signals are sampled at
11025Hz.
For the second data set, the data matrix X(t) ∈R108×1024

+ is
composed of the power spectra of all 108 recordings (12 in-
struments with nine examples each) included in the database.
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Finally, for the third test data set, signals from two differ-
ent instruments (clarinet-violin) si(t) are mixed with time-
varying weights ai j(t) to form linear 2×2 mixtures mi given
by:

mi(t) = ∑
j

ai j(t)s j(t)

The random weight functions ai j(t) have fixed autocorrela-
tion to ensure that they are sufficiently smooth, i.e., their
change in the examined 100ms window is insignificant but
their overall variation is not negligible. From the power spec-
tra of the two mixtures two components are extracted, and
compared to the power spectra of the original data.

3.1 Results
3.1.1 Fast changing unstructured data

Figure 1 shows the average convergence rate for both gradi-
ent descent methods (4,6) used with Euclidean cost function.
The convergence rate is measured as the logarithm of the nor-
malized error:

log
(
Q(X(t),A(t)B(t))

)
:= log

(‖X(t)−A(t)B(t)‖
‖X(t)‖

)

Both the average convergence (lines in figure 1) and the stan-
dard deviation (shaded areas in 1) are computed from twenty
random examples X(t). The systems that correct for the
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Figure 1: Average convergence (lines) and standard devia-
tion (shaded area) for the uncorrected system (9) and the cor-
rected system (10). The dotted line shows the performance of
the discrete NMF update rules (Euler approximation) given
the time dependent data X(t), t = 1,2, . . ..

temporal derivative ∂E
∂ t outperform their uncorrected coun-

terparts, as expected from their increased step size. In addi-
tion the projected gradient descent method have a slightly in-
creased convergence rate compared to the systems with steps
equal to the discrete non-negative matrix factorization. The
slightly erratic behavior of the corrected projected gradient
method is a reflection of the aggressive choice of step length
(13). To smooth the convergence behavior smaller step in-
creases can be used, but their theoretical derivation involves
the solution of an implicit problem as the set of indices I1, I2
also depend on the step sizes.

3.1.2 Music data
Figure 2 shows the factorization performance of both ap-
proaches (4) and (6), measured by logarithm of the normal-
ized approximation error log

(
Q(t)

)
for the complete music

data set.
The smaller difference between the two solutions compared
with the fast time changing case, can be explained by the fact
that for music:

(
∂E
∂ t

)

+
¿∑

i j

(
∂E
∂ai j

)
ȧi j +∑

jk

(
∂E

∂b jk

)
ḃ jk

As a baseline Figure 2 also includes the average performance
of the discrete update rules (2), i.e. the Euler approximation.
The performance of this approximation depends heavily
on the variation of the data between time steps, with good
convergence for slow change and very erratic behavior for
large differences.
The time-averaged approximation performance is
Qproj. grad = 0.163 , Qgrad = 0.1868 for the corrected
projected gradient and corrected gradient systems respec-
tively as well as 0.164 = Qproj. grad, 0.1868 = Qgrad for
the uncorrected systems. The baseline discrete time NMF
achieves QNMF = 0.472.
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Figure 2: Approximation quality for the (un)corrected solu-
tions for the first second of the music data in comparison to
the average performance of discrete NMF.

3.1.3 Time-dependent two by two mixtures

Judging mathematically the quality of sound separation is a
nontrivial problem and a variety of measures have been pro-
posed [14]. However most of these measures are hard to in-
terpret and compare. Here we use simple correlation. Specif-
ically, the similarity between the extracted spectra sω1,2(t)
and the original music spectra pω1,2(t) is measured by the
Pearson correlation coefficient ci j = corr(sωi(t), pω j(t)) and
is shown in figure 3. Note that since the solution of the dy-
namical system is smooth, the usual ambiguity in the order-
ing of the extracted sources is largely avoided, i.e. the order
determined by the initial values is kept up to points with high
correlation between the original spectra pω1,2(t). The overall
time averaged performance is c = 0.9. Thus dynamical NMF
with Euclidian cost function performs quite well in separat-
ing the different instruments.
This numerical experiment uses the most straightforward ap-
plication of the simplest case of cost function (Euclidean) al-
lowed in the framework for dynamical NMF. Its performance
is bound to be further enhanced if more sophisticated costs
like the Itakura-Saito (IS) divergence [12] or a regularizer
like sparseness [15] are used. Also, since the scaling am-
biguity allows the temporal variability of the weights to be
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regarded as additional amplitude fluctuation of the sources, a
more realistic model for real sound mixtures would replace
the weights with time-dependent filters. Using the convo-
lutive non-negative factorization discussed in [11], such a
filter-based model is actually a special case of (9).
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ti
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Figure 3: Mean correlation coefficient (continuous line) be-
tween the extracted sound spectrograms and the original
spectrograms. The shaded area denotes the standard devi-
ation computed in twenty simulations.

4. CONCLUSION

We presented a new approach to non-negative matrix factor-
ization based on dynamical systems. The approach has sev-
eral advantages. Primarily, the treatment in continuous-time
allows the use of time-varying cost functions, including in
particular the case of time-dependent data. It is also straight-
forward to extend the framework to the large variety of mod-
ifications developed for non-negative factorizations, such as
regularized NMF, non-negative tensor factorization, or con-
volutive NMF. In fact, using the anechoic NMF [12] update
rules, convolutive NMF can be treated as a special case of
the algorithm discussed here, thus extending the method to
time-varying filters.
In future work, the time-varying cost functions which the
method allows may also consist of composite costs functions
E of the form, for instance:

E = sin2(t)E1 + cos2(t)E2

as such composite cost functions have been shown to exhibit
promising properties in avoiding local minima [8] and in
the development of modular structures reflecting common-
alities in the Ei’s [7]. In addition, continuous-time Newton
(or quasi-Newton) methods for time-varying cost functions
along the lines of [10], i.e. state updates designed such that

d
dt

∇E(x, t) = −λ∇E(x, t)

(with λ strictly positive) may also hold promising properties.
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