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ABSTRACT

In this paper, we present an interpolation-based method for
near-field array calibration. Based on an analysis of the re-
ceived signal model, the position-dependent errors are mod-
eled by a correction matrix. By interpolating the correction
matrix, pseudo calibration data can be obtained numerically.
The proposed method allows us to calibrate the array re-
sponses on a dense grid by taking a small number of mea-
surements. It is shown via simulations that this method has a
good performance in near-filed array calibration.

Index terms- source localization, array signal process-
ing, position measurement, calibration

1. INTRODUCTION

Source localization with an array of sensors has become a
popular topic since last several decades. Most proposed
methods presume the knowledge of the array response such
as Minimum Variances in [1], the subspace-based methods
in [5], Maximum Likelihood in [10] and approximated ap-
proaches for near-field sources localization in [3,4,13]. It is
shown in [11, 12] that any inaccuracy in the presumed array
response results in severe degradation of estimation perfor-
mance. Array calibration via the measurement of the array
response, is therefore a crucial step in the implementation of
localization techniques.

Many calibration approaches have been developed for lo-
calization of far-field sources. For example, the global cali-
bration method is proposed in [9]; the self-calibration tech-
niques are summarized in [7] and methods in presence of
multi-path are introduced in [6]. When the sources are lo-
cated in near-field, the parameters to estimate are both the di-
rections of arrival (DOAs) and the ranges. The measurement
of array response must then be carried on in a two dimension
(2D) environment; however, it is too expensive.

Recently, an interpolation-based calibration method for
far-field source localization has been proposed in [8]. From
measurements made on a sparse calibration grid, this ap-
proach allows us to obtain pseudo measurements data by in-
terpolating the original data. The DOA-dependent errors are
well corrected due to the use of local error model.

In near-field situation, the model errors (e.g. caused by
multi-path propagation) may depend not only on the DOAs,
but also on the ranges. In this paper, we propose an inter-
polation algorithm for array calibration in near-field. The
position-dependent errors are modeled by a correction ma-
trix which can be estimated from a small number of mea-
surements. By interpolating the correction matrix, new cal-
ibration data on a dense grid can be calculated numerically.
Furthermore, instead of the optimization-based interpolation

algorithm in [8], spline interpolations [2] are used in this ap-
proach for sake of efficiency. This proposed method is tested
by simulations and shown to have good performance on the
estimation of source positions.

The rest of this paper is organized as follows: in section
two, the background and signal model are introduced; sec-
tion three presents the interpolating algorithm; section four
elaborates on the application of the calibration data to local-
ization algorithms; the proposed method are verified via sim-
ulations in the fifth section and the whole paper is concluded
in section six.

2. BACKGROUND

Consider a near-field scenario of K uncorrelated narrow-band
signals impinging to the (2M + 1)-element array in an envi-
ronment with multi-path propagation as illustrated in figure
1. Let the array center be the reference point of the coor-
dinates system. The inter-element spacing of the array is d.
The received signal at the array can be modeled as

x(t) =
K

∑
k=1

a(θk,rk)sk (t)+n(t) (1)

where a(θk,rk) denotes the (2M +1)×1 vector of the array

response to the kth source located at (θk,rk), sk (t) is the sig-

nal emitted by the kth source and n(t) is the vector of additive
white Gaussian noise (AWGN).

To estimate the source positions from the received sig-
nal in (1), we need the knowledge of the array response
a(θ ,r) to searching area. Most localization algorithms pre-
sume a(θ ,r) to be simply the phase shift vector due to the
direct propagation from source location to the array. In this
case, the array response a(θ ,r) can be calculated from Green
function. In a real environment, the contributions to the array
response may consists of several parts:

1. Direct propagation from source to the array

2. Multi-path propagation from source to the array

3. Errors caused by non-perfect effects (e.g. non-
synchronization, channel fading, position errors of the
array, etc.)

The array response vector must then be modeled as

a(θ ,r) = ρdad (θ ,r)+
I

∑
i=1

ρiai (θ ,r)+b (2)

where ad (θ ,r) denotes array response in phase of direct
propagation from the source to the array, ai (θ ,r) is the re-

sponse in phase of the ith indirect path, b is the vector of
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Figure 1: Array configuration: a 2M+1-element array is em-
ployed to localize sources in presence of multi-path propaga-
tion and model errors

errors caused by non-perfect effects, ρd is the signal atten-
uation factor of the direct propagation, ρi is the attenuation

factor of the propagation and the reflection in the ith indirect
path, I denotes the number of indirect paths. Without loss of
generality, we can normalize the propagation attenuation by
taking ρd = 1.

To simplify the array response model (2), we introduce a

correction matrix Q(θ ,r)∈C(2M+1)×(2M+1) which is depen-
dent on (θ ,r). We can rewrite (2) as

a(θ ,r) = Q(θ ,r)ad (θ ,r) (3)

We note that all the contributions to the array response can
be modeled by (3). If mutual coupling of the array is ne-
glected, Q(θ ,r) is a diagonal matrix . Under this hypothesis
(which is considered in the whole paper), the diagonal matrix
Q(θ ,r) can be obtained by

qm (θ ,r) =
a(θ ,r,m)

ad (θ ,r,m)
(4)

where a(θ ,r,m) and ad (θ ,r,m) are the elements of a(θ ,r)
and ad (θ ,r) corresponding to the mthsensor, qm (θ ,r) is

the diagonal element in the (2M +1−m)th
row of Q(θ ,r).

Practically, a(θ ,r) is calibrated via measurements. ad (θ ,r)
is the phase shift in the direct path, which can be calculated
with Green function and the positions of the array elements.
We note that the array configuration can be arbitrary. To
simplify the presentation, we consider uniform linear arrays
(ULA) in this paper. Then, we write ad (θ ,r) as

ad (θ ,r) =
[

e jτ−M , . . . ,e jτm , . . . ,e jτM
]T

(5)

with

τm =
2π

λ

(

√

r2 +m2d2 −2rmd cosθ − r
)

(6)

where the superscript T denotes the matrix transposition and
λ is the wavelength of the source signal.

3. INTERPOLATION OF CALIBRATION

To calibrate the array response in presence of multi-path
propagation, we are required to make measurements. The
precision of localization is dependent on the density of the
calibration grid. A large number of measurements (on a
dense calibration grid) are required to achieve a good perfor-
mance in localization, however, it is too expensive to make
lots of measurements.

Another solution for the calibration of array response
is to interpolate the calibration data measured on a sparse
grid. Since the array response varies largely with respect
to source position, interpolating a(θ ,r) may bring a lot of
noise, which could degrade greatly the precision of the lo-
calization. From Green function and array response model
(3), we know that the attenuation of multi-path propagation
is bigger than that of direct propagation, so the most impor-
tant contribution of the array response comes from the di-
rect propagation. Consequently, we could consider that the
correction matrix Q(θ ,r) in (3) varies near identical matrix.
The interpolation algorithm is then performed to the correc-
tion matrix Q(θ ,r) via five steps.

1. Measure the array response a(θ ,r) on a sparse grid with

θ = θmeas1
, θmeas2

, . . . , θmeasJ

and
r = rmeas1

, rmeas2
, . . . , rmeasL

.

2. Choose the density of the new calibration grid:

θ = θnew1
, θnew2

, . . . , θnewO

and
r = rnew1

, rnew2
, . . . , rnewP

,

where O > J, P > L with O and P being positive integers
which indicate the density of the new grids.

3. Estimate the correction matrix Q(θ ,r) at all the mea-
sured positions by (4), (5) and (6), i.e. for θ =
θmeas1

,θmeas2
, . . . ,θmeasJ

and r = rmeas1
,rmeas2

, . . . ,rmeasL
.

4. Calculate the correction matrix Q(θ ,r) at all the inter-
polated positions by using cubic spline interpolation [2]
(More details are presented in appendix).

5. Calculate the array response a(θ ,r) by (3) with the re-
sults obtained in the fourth step. The new calibration
data are obtained with θ = θnew1

, θnew2
, . . . , θnewO

and
r = rnew1

, rnew2
, . . . , rnewP

.

4. MUSIC METHOD FOR LOCALIZATION

With the pseudo array response obtained from the last sec-
tion, the DOAs and ranges of the sources can be estimated
by 2-D MUSIC method. The pseudo MUSIC spectrum is
given by

PMUSIC (θ ,r) =
1

aH (θ ,r)UnUH
n a(θ ,r)

(7)

where θ and r denote positions on the corresponding calibra-
tion grid, the superscript H indicates matrix conjugate trans-

position and Un ∈ C(2M+1)×(2M+1−K) is the matrix of the
eigenvectors associated with the smallest 2M +1−K eigen-
values of the covariance matrix of the received signal vector
defined as

R = E
[

x(t)x(t)H
]

. (8)

1132



10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

2

2.5

3

3.5

4
performance of estimation source 1

source angle(degree)

R
M

S
E

(d
e

g
re

e
)

non

true

4−spl

16−spl

90 100 110 120 130 140 150 160 170
0

0.5

1

1.5

2

2.5

3

3.5

4
performance of estimation source 2

source angle(degree)

R
M

S
E

(d
e

g
re

e
)

non

true

4−spl

16−spl

Figure 2: Four calibration strategies are compared in terms
of the RMSE of the estimates for 2 moving sources: non-
calibration (solid line); true calibration (dotted line); 4 spline
interpolation (dashed line); 16 spline interpolation (dashdot
line).

Since the array response to the source locations spans the
signal subspace of the covariance matrix, the peaks of the
pseudo MUSIC spectrum in (7) imply the source positions.

5. NUMERICAL RESULTS

In this section, two simulations are carried out to test the per-
formance of the proposed calibration method.

5.1 Calibration by interpolation

First, we employ a 5-element sensor array to localize 2 mov-
ing sources: one moving from 15◦ to 85◦; the other moving
from 165◦ to 95◦. The distance between the sources and the
array is fixed at 3λ . The inter-element spacing of the array is
λ/4. Two scatters are placed at (50◦, 5.5λ ) and (100◦, 5.2λ )
with their reflection coefficients being 0.15+0.2 j and 0.2−
0.1 j respectively. 100 runs of independent Monte Carlo ex-
periments are carried out for signal to noise ratios (SNRs)
of the received signal fixing at 10dB. 200 snapshots are used
for the estimation of the covariance matrix of the received
signal. The results are obtained via MUSIC method using
four different calibration strategies:

Non-calibration: No calibration is performed. The array re-
sponse is considered to be the phase shift due to the direct
propagation.

True-calibration: 81 measurements are taken from 10◦ to
170◦ with interval of 2◦.
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Figure 3: RMSE of DOA estimation versus SNR of mea-
surement noise: spline interpolated calibration (solid); true
calibration (dotted)

4-spline-interpolation: 21 measurements are taken from
10◦ to 170◦ with interval of 8◦. With spline interpola-
tion, 81 points are finally calibrated for the localization
(with interval of 2◦).

16-spline-interpolation: The same measurements are taken
as 4-spline interpolation. 321 points are finally calibrated
from 10◦ to 170◦(with interval of 0.5◦)

The results of this simulation are demonstrated in Fig. 2 in
terms of the Root Mean Square Errors (RMSE) of the esti-
mates. We can see that the results from non-calibrated data
are largely biased due to the model errors. An accordance
is shown between the results from true-calibration data and
the 4-spline-interpolation calibration data, because the same
density of calibration is used in these two strategies. The re-
sults from 16-spline-interpolation calibration data are better
than the others because a denser calibration grid is chosen.

5.2 Interpolating-based Calibration in existence of noise

Since the calibration of the array response is performed
via measurements, noise is unavoidable in the measurement
data. In this simulation, we carry out 200 independents trials
to test the performance of the proposed calibration method
in presence of measurement noise. A 5-element sensor lin-
ear array is employed to localize 2 sources with their posi-
tions being (70.3◦, 2.93λ ) and (109.3◦, 4.12λ ). The inter-
element spacing of the array is λ/4. Two scatters are placed
at (50◦, 5.5λ ) and (100◦, 5.2λ ) with their reflection coef-
ficients being 0.25 + 0.2 j and 0.3− 0.1 j respectively. The
SNR of the received signal is 10 dB and 200 snapshots are
used for the estimation of the covariance matrix. Additive
white Gaussian noise is considered in the measurement data
(i.e. the vectors a(θ ,r) in the first step of the algorithm in
section 3) with the SNR varying from 0dB to 30dB. The re-
sults from two calibration strategies are compared:

True-calibration: 81 × 81 measurements are taken from
50◦ to 130◦ and from 1λ to 5λ (every 1◦ and 0.05λ ).

Spline-interpolation: 21×21 measurements are taken from
50◦ to 130◦ and from 1λ to 5λ (every 4◦ and 0.2λ ). With
spline functions, 81× 81 points are totally calibrated by
interpolating the noisy measurement data.(every 1◦ and
0.05λ ).
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Figure 4: RMSE of range estimation versus SNR of mea-
surement noise: spline interpolated calibration (solid); true
calibration (dotted)

The results are demonstrated in Fig. 3 and Fig. 4 in terms of
the RMSE of the estimates. Since the same calibration den-
sity is used, an accordance between the two calibration strate-
gies is found from the results. The simulation results shows
that the proposed interpolation-based calibration method has
a good performance in presence of measurement noise.

6. CONCLUSION

We present an interpolation-based method to calibrate the ar-
ray response in near-field source localization. From an anal-
ysis on the signal model, new pseudo calibration data are ob-
tained by interpolating the correction matrix, which allows us
to calibrate the array response on a dense grid with a small
number of measurements. The proposed approach is shown
to have good performance.
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APPENDIX

A. CUBIC SPLINE INTERPOLATION

A.1 Definition

Given n+1 distinct knots xi such that

x0 < x1 < · · · < xn−1 < xn, (A-1)

with n + 1 knot values yi, a cubic spline function S (x) is a
piecewise-defined function

S (x) =















S0 (x) x ∈ [x0,x1]
S1 (x) x ∈ [x1,x2]

...
...

Sn−1 (x) x ∈ [xn−1,xn]

(A-2)

which satisfies the following conditions:

1. The interpolating property, S (xi) = yi

2. The splines to join up, Si−1 (xi) = Si (xi) = yi, i = 1, ...,n−
1

The n cubic polynomial pieces are written as

Si (xi) = ai +bi (x− xi)+ ci (x− xi)
2 +di (x− xi)

3 , (A-3)

for i = 1, ...,n− 1, where ai, bi, ci and di represent 4n un-
known coefficients. With the three conditions in the defini-
tion, 4n− 2 equations are known. To solve the polynomial
group (A-3), two more conditions can be imposed upon the
problem.
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A.2 Natural Spline Interpolation for Calibration

Natural spline is used to calculate the 4n coefficients in (A-
3). So the two conditions are

S′′ (x0) = S′′ (xn) = 0 (A-4)

An example for the interpolation of calibration data is given
here.

We suppose that the (n+1)× (n+1) measurements are
taken for

θ = θmeas1
, θmeas2

, . . . , θmeasn+1

and
r = rmeas1

, rmeas2
, . . . , rmeasn+1

.

From (4), (5) and (6), we can calculate(n+1)× (n+1) esti-
mates of Q(θ ,r). We note that Q(θ ,r) is supposed to be di-
agonal matrix under the hypothesis that the mutual coupling
is neglected. Each diagonal element of Q(θ ,r)

qm (θ ,r) for m = −M, . . . ,0,1, . . . ,M

is a function of (θ ,r). The interpolation is then performed to
each qm (θ ,r) separately via two steps.

1. Interpolate qm (θ ,r) with respect to θ for r =
rmeas1

, rmeas2
, . . . , rmeasn+1

. We obtain then (Kn+1)×
(n+1) estimates of qm (θ ,r), where K > 1 indicates the
density of interpolation.

2. Interpolate qm (θ ,r) with respect to r for θ =
θnew1

, θnew2
, . . . , θnewKn+1

, where qm

(

θnewi
,rmeas j

)

for i =
1,2, . . .Kn+1 and j = 1,2, . . . ,n+1 is obtained from the
previous step.

Finally, (Kn+1)× (Kn+1) estimates of qm (θ ,r) for θ =
θnew1

, θnew2
, . . . , θnewKn+1

and r = rnew1
, rnew2

, . . . , rnewKn+1

are obtained via Kn+n+2 times spline interpolation.
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