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Abstract—In this paper, a blind carrier phase estimator based on
a suitably weighted phase histogram of the received signal samples is
phrased as a particular case of the Generalized Moments Method (GMM).
More in general, in this contribution, we point out that the estimation
of a shift parameter by means of the GMM can be realized using a fast,
DFT based, computationally efficient, coarse-to-fine estimation procedure.
Furthermore, we develop the statistical analysis needed to extend the
estimator to the optimally weighed GMM estimator, i.e. the weighted
estimator achieving the minimum estimate variance. The theoretical
analysis of the optimally weighted estimator performances is carried out
in close form. Finally, the theoretical weighted estimator performances
are compared with those of the unweighed estimator, of a state-of-
art estimator and of the Cramèr-Rao lower bound. The performance
improvement due to the optimal weighting is clearly appreciated, since,
at medium to high SNR, it approaches the Cramèr-Rao lower bound on
all constellations.

I. INTRODUCTION

The Generalized Method of Moments (GMM) has been first
introduced by [1] and has been applied in many contexts. An useful
review is found in [2], [3].

Here, we recast a blind method for phase acquisition, recently
appeared in [4], in the GMM framework, also providing its extension
in the sense of the minimum variance (best) GMM phase estimator.
In [4], the phase offset is evaluated as the cyclic phase shift observed
on the weighted phase histogram of the fourth power of the received
signal samples. For large sample size, the phase histogram tends
to a constellation dependent function, named Constellation Phase
Signature (CPS), constituted by a set of pulses whose widths depend
on the SNR, and whose locations depend on the signal constella-
tion and on the unknown phase offset. Since the unknown phase
offset cyclically shifts the CPS, it can be estimated by evaluating
the phase shift between the measured CPS and its expected value
corresponding to zero phase offset. We show that this estimation
procedure corresponds to the application of the unweighted GMM;
furthermore, we perform all the statistical analysis needed to derive
the best GMM estimator, i.e. the optimally weighted estimator that
minimizes the estimation variance. Performance comparison shows
that the a significant accuracy gain is guaranteed by the best GMM
estimator at medium-high signal-to-noise power ratio values, where
the Cramèr-Rao lower bound (CRB) is attained.

The paper is organized as follows: Sect.II depicts the signal model,
recalling the definition of the CPS and the phase estimation criterion
adopted in [4]. Then, Sect.III describes the GMM algorithm defining
the Generalized Moments in terms of the signal CPS; we also derive
the GMM estimator in its optimal weighted and unweighted form.
Asymptotical performance of the GMM phase estimator are assessed
in Sect.IV, in Sect.V we comment the performance comparison with
the CRB, and Sect.VI concludes the paper.

II. SIGNAL MODEL AND BACKGROUND

Let us consider a digital transmission system where the information
is carried on by M -ary QAM symbols drawn from a constellation
A={S0, .., SM−1}. At the receiver side, a complex low-pass version
of the received signal is extracted by means of front-end processing.
Let X [n] be the samples of the complex low-pass received signal
extracted at symbol rate. We assume the following analytical model
of the N signal samples X [n], n = 0, · · ·N − 1:

X [n] = Gejθ S[n] +W [n] (1)

where S[n] is the n-th transmitted symbol, supposed to have unit
power, G is the unknown overall gain, θ is the unknown phase-
offset, and W [n] is a realization of a circularly complex Gaussian
stationary noise process, statistically independent of S[n], with vari-
ance σ2

W

def
= E

˘|W [n]|2¯
. The signal-to-noise ratio (SNR) is thus

SNR
def
=G2/σ2

W .
Let us now consider the following nonlinear function of the

received signal samples X [n]:

Y [n] = |X [n]|P · ej4·arg X[n] (2)

This nonlinearity has the remarkable properties to fold measurements
whose phases differ by π/2. The statistical properties of Y [n] can
be usefully exploited to derive estimators of the phase-offset θ. In
[4], it is considered the so-called Magnitude weighted Tomographic
Projection (MWTP) of the probability density function of Y [n],
defined as follows:

g(A,θ,P)

Φ
(ϕ)

def
=

Z +∞

0

r · p
R,Φ

(r, ϕ; θ) dr (3)

where we expressed the transformed samples Y [n] in polar coordi-
nates i.e. Y =rejϕ, and we denoted its probability density function
as p

R,Φ
(r, ϕ; θ).

As widely discussed in [4], the MWTP is a periodic function that
depends on the phase-offset θ in the form of a cyclical shift of 4θ,
i.e. g(A,θ,P)

Φ
(ϕ)=g(A,0,P)

Φ
(ϕ− 4θ).

Since g(A,θ,P)

Φ
(ϕ) substantially behaves like an ordinary pdf, the

MWTP can be estimated by subdividing the phase interval [0, 2π) in
K intervals of amplitude 2π/K :

I
(k)
K

def
=

»
k · 2π

K
, (k + 1) · 2π

K

«
, for k = 0, . . . ,K − 1 (4)

and estimating the area of g(A,θ,P)

Φ
(ϕ) in the k-th phase interval:

f (A,θ,P) (ψk)
def
=

Z 2π(k+1)/K

2πk/K

g(A,θ,P)

Φ
(ϕ) dϕ (5)

being ψk
def
= 2πk/K . The function f (A,θ,P) (ψk), first introduced in

[4], is constellation dependent, and it is named Constellation Phase
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Signature (CPS). Also the CPS, is cyclically shifted of 4θ under a
phase-offset θ, and, for a large enough K , it results:

f (A,θ,P) (ψk) � 2π

K
g(A,θ,P)

Φ
(ψk) (6)

The analytical form of the MWTP is quite involved and has been
evaluated in [4]; here it is omitted for the sake of conciseness.

Therefore, in [4] the phase-offset estimation problem is rephrased
as a (cyclic) shift estimation problem, between the analytically eval-
uated zero phase offset CPS f (A,0,P) (ψk) and the sample estimate
of the CPS f̂ (A,θ,P) (ψk), this latter calculated as the sample average
of |Y [n]| in the k-th phase interval I(k)

K , k = 0 . . .K − 1:

f̂ (A,θ,P) (ψk) =
K

2π
· 1

N

N−1X
n=0

|Y [n]| · d(k)
K (Y [n]) (7)

where d(k)
K (Y ) is the function that indicates if arg Y ∈I(k)

L :

d
(k)
K (Y )

def
=

(
1 arg Y ∈ I

(k)
L

0 otherwise

The cyclic shift estimation is then realized resorting to a cross-
correlation based procedure, efficiently evaluated using the properties
of the Discrete Fourier Transform (DFT).

In the following Section we will describe how this CPS based
phase estimation procedure can be phrased in the framework of the
GMM.

III. THE GENERALIZED METHOD OF MOMENTS

Let us define the following generalized moment:

e(ξ)
def
= f̂ − f(ξ) (8)

being f̂
def
=

h
f̂ (A,θ,P) (ψ0) , . . . , f̂

(A,θ,P) (ψK−1)
iT

the observation
vector collecting the K values of the sample CPS, and

f(ξ)
def
=

h
f (A,ξ,P) (ψ0) , . . . , f

(A,ξ,P) (ψK−1)
iT

the reference vector
collecting the same values of the ideal CPS for a generic phase offset
ξ.

Since the CPS estimator defined in (7) is unbiased [4], properly
taking into account the four quadrant phase folding in (2), it results:

E {e(ξ)} = 0 iff ξ = 4θ (9)

Then, according to the GMM [1], [2], a Consistent and Asymp-
totically Normal (CAN) estimate of θ is found by minimizing the
generalized moment (8) according to a suitable weighted norm
criterion. Namely, considering the elliptic norm:

Q(ξ;W(θ)) = (f̂ − f(ξ))TW(θ)(f̂ − f(ξ))

the GMM estimate of θ is obtained as follows:

θ̂(W) =
1

4
arg min

ξ
Q(ξ;W(θ)) (10)

Obviously, the final estimation accuracy is affected by the weighting
matrix W(θ), possibly depending on θ.

A. Unweighted GMM Estimation

In the unweighted case, i.e. W(θ) = I, the GMM cost function
reduces to the classical Euclidean norm:

Q(ξ; I) = (f̂−f(ξ))T(f̂−f(ξ)) = f̂T·f̂+f(ξ)T·f(ξ)−2 f̂T·f(ξ) (11)

Let us consider a K large enough to neglect the aliasing (possibly)
present in the ideal CPS sampling that forms the vector f(ξ).
Then, since ξ is a cyclic location parameter for the ideal CPS, i.e.
f (A,ξ,P) (ψk)=f (A,0,P) (ψk − ξ), we can write:

f(ξ) = S(ξ) · f(0)

where S(ξ) is the periodic sinc interpolation matrix, with entries:

||S(ξ)||k,m =
1

K

sin((Kξ − 2π(k −m))/2)

sin((Kξ − 2π(k −m))/2K)

The matrix S(ξ) is orthogonal, i.e. S(ξ)TS(ξ) = I, and thus the
quadratic norm of the vector f(ξ) does not depend on ξ:

f(ξ)T · f(ξ) = f(0)T · S(ξ)TS(ξ) · f(0) = f(0)T · f(0)
Hence, the minimal value of Q(ξ; I) is found by maximizing the
scalar product f̂T· f(ξ) with respect to ξ:

θ̂(I) =
1

4
arg min

ξ
Q(ξ; I) =

1

4
arg max

ξ
f̂T· S(ξ) · f(0) (12)

We recognize that (12) exactly is the cost function employed in [4],
here rather (re-)obtained in the framework of the GMM estimation
procedure. It is worth noting that maximization of (12) can be con-
ducted even though the sample CPS is estimated apart an amplitude
scale factor, i.e. without accomplishing a preliminary gain control
stage, and the phase offset estimation has to be properly considered
gain-control-free.

Moreover, as indicated in [4], a fast, DFT based, computational
procedure obtains θ̂(I) in a two-stage, coarse-to-fine, estimation steps.
In fact, it results:

S(2πk/K) = Dk

being D=(DT)−1 the following orthogonal unit cyclic shift matrix:

D
def
=

2
666666664

0 · · · · · · 0 1

1
. . .

. . .
. . . 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . .
...

0 · · · 0 1 0

3
777777775

Thus, the index kc of the coarse estimation with resolution 2π/K ,
namely θ̂(I)c =2πkc/K , is obtained from (12) rewritten as follows:1

kc = arg min
k

Q
„

2πk

K
; I

«
= arg max

k
f̂T· Dk · f(0) (13)

Due to the cyclic shift property of the operator D, in the rightmost
hand side of (13) it appears the cyclic cross-correlation between the
sequences collected in the vectors f̂ and f(0); thus, the maximization
over k can be conducted by properly using the DFT of both the se-
quences. Specifically, the DFT of the sample sequence f̂ (A,θ,P) (ψk),
for k=1, . . . ,K , is computed and multiplied by the pre-calculated,
complex conjugated, DFT of the zero phase-offset reference CPS
f (A,0,P) (ψk), so as to obtain their cross-correlation after inverse
DFT, as also indicated in [4]; then, according to (13), the index kc

is read as the lag that locates the cross-correlation maximum. The
overall computational complexity is significantly reduced by choosing
the value of K according to selected FFT algorithms.

B. Minimum Variance GMM Estimation

Let us now consider the best GMM estimator, i.e. the GMM estimator
that minimizes Var

n
θ̂(W)

o
with respect to W, which uses the

following optimal weight matrix:

W0(θ) = arg min
W

Var
n
θ̂(W)

o
1It is worth noting that (13) hold for any integer k, even in presence of

aliasing in the ideal CPS sampling.
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It is well know [1], [2] that the optimal weight matrix turns out to
be W0(θ) = Ω(θ)−1/N , being Ω(θ)

def
= E{(f̂ − f(θ))(f̂ − f(θ))T}

the covariance matrix of the measurements, with entries:

||Ω(θ)||i,j def
= Cov

n
f̂ (A,θ,P) (ψi) , f̂

(A,θ,P) (ψj)
o

(14)

Since the evaluation of the inverse measurements covariance matrix
Ω(θ)−1 requires the knowledge of the true parameter θ, a coarse-to-
fine approach can be envisaged for the minimization of Q(ξ;W0(θ)).
Namely, once a coarse GMM estimate θ̂c ≈ θ is found,2 the optimal
GMM cost function Q(ξ;W0(θ)) can be approximated as follows:3

Q(ξ;W0(θ)) ≈ Q(ξ;W0(θ̂c)) = (f̂ − f(ξ))TW0(θ̂c)(f̂ − f(ξ))

so to obtain a fine estimate as follows:

θ̂f =
1

4
arg min

ξ
Q(ξ;W0(θ̂c))

Since the term f̂T · W0(θ̂c) · f̂ does not depend on ξ, we can also
consider the following modified cost function:4

J (ξ;W0(θ)) = f̂T ·W0(θ̂c) · f(ξ)− 1

2
· f(ξ)T ·W0(θ̂c) · f(ξ) (15)

and
θ̂f =

1

4
arg max

ξ
J (ξ;W0(θ̂c))

IV. PERFORMANCE ANALYSIS

It is well known that the asymptotic estimation variance obtained
using the best GMM is [1], [2]:

N · Var
n
θ̂f

o
=

`
g(θ)T · W0(θ) · g(θ)

´−1
(16)

where

g(ξ) =

»
∂f (A,ξ,P) (ψ0)

∂ξ
, . . . ,

∂f (A,ξ,P) (ψK)

∂ξ

–T

is the gradient vector collecting the first derivatives of the ideal CPS.
Since the analytical expression of this latter is quite involved, see

Appendix A in [4], and in order to avoid the analytical differentiation,
we conduct the search for the maximum in (15) by means of a suitable
interpolation after a few values of J (ξ;W0(θ̂c)) have been evaluated
around the coarse estimate θ̂c. Here, following [4], [5] we resort to a
parabolic approximation for the GMM cost function J (ξ;W0(θ̂c))
around its maximum, thus obtaining the following expression for the
fine estimate θ̂f :

θ̂f = θ̂c − Δθ

8

· J (θ̂c + Δθ;W0(θ̂c)) − J (θ̂c − Δθ;W0(θ̂c))

J (θ̂c+Δθ; W0(θ̂c))−2J (θ̂c;W0(θ̂c))+J (θ̂c−Δθ;W0(θ̂c))

(17)

2As previously described, a coarse GMM estimate of θ can found by
minimizing (11), i.e. from (13) and θ̂c =2πkc/K .

3For θ̂c = 2πkc/K, and since θ is a cyclic location parameter, the
covariance matrix can be factorized as follows:

Ω(θ̂c) = D4kcΩ(0)(DT)4kc

and its inverse Ω(θ̂c)−1 is simply evaluated:

Ω(θ̂c)−1 = D4kcΩ(0)−1(DT)4kc

This circumstance can be exploited to pre-calculate and store the inverse
matrix Ω(0)−1, and to obtain the matrix Ω(θ̂c)−1 by columns and rows
cyclic shifting.

4In principle, (15) requires a preliminary gain estimation stage, which in
turn can be substituted by a proper normalization of the CPS vectors, for
instance:

f̂ =⇒ f̂
p

f̂T · f̂
; f(ξ) =⇒ f(ξ)

p
f(0)T · f(0)

The estimation form (17) is analytically tractable in a relatively
simple fashion, and it allows to evaluate the asymptotical performance
of the optimal GMM based estimation.

Following the guidelines in [5], [4] the performance of the estima-
tor (17) can be expressed as a function of the variances and covari-
ances of J (ξ;W0(θ)); specifically, the variance of θ̂f is analytically
evaluated as a function of the mean, variances and covariances of
J (θ̂c;W0(θ)), J (θ̂c + Δθ;W0(θ)) and J (θ̂c − Δθ;W0(θ)).

Let us set:

x = J (θ̂c + Δθ; W0(θ)), X = E {x} ,
y = J (θ̂c − Δθ;W0(θ)), Y = E {y} ,
z = J (θ̂c;W0(θ)), Z = E {z}

c = X − Y, d = X − 2Z + Y.

Then, within a first-order approximation of (17), the variance of θ̂f

is given by:

Var {θ̂f} =
Δθ2

64

" „
d− c

d2

«2

Var {x}

+

„
d+ c

d2

«2

Var {y} +

„
2c

d2

«2

Var {z}

− 2

„
d2 − c2

d4

«
Cov {x, y} + 2

„
2dc + 2c2

d4

«
Cov {z, y}

+ 2

„
2dc − 2c2

d4

«
Cov {x, z}

#
(18)

The mean values X,Y,Z and the variance and covariances of x, y, z
have been analytically evaluated; the details of the derivation are
reported in Appendix I.

V. PERFORMANCE COMPARISON

Using (18) the accuracy of the best GMM estimator has been
evaluated. In Figs.1-3 we have reported the results of the analysis,
expressed in terms of the normalized standard deviation of the
estimation error

√
N ·StdDev{θ̂f} versus the SNR,5 both for square-

constellations (16-64-256 QAM) and cross-constellations (32-128-
512 QAM). For simplicity, we have limited the analysis to the case
P =1.

For the sake of comparison, we have also reported the results
pertaining to the unweighted GMM estimator employing the cost
function in (11). Moreover, for comparison purposes we have also
considered the state-of-the-art estimator [6] (WA03), as well as the
CRB [7].

From Figs.1-3 we observe that, for all the herein considered
constellations, at medium to high SNR the optimal weighted estimator
approaches the CRB, with a clearly appreciated accuracy improve-
ment.

5For each SNR value, a suitably L must be chosen such that approximation
(6) is verified. In Figs.1-3, L varies from 512 (dense 64-QAM, 128-QAM,
256-QAM, 512-QAM constellations) to 1024 (sparse 16-QAM and 32-QAM
constellations).
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VI. CONCLUSION

In this paper, we have phrased a blind method for phase acquisition
based on the Constellation Phase Signature (CPS) as a particular case
of the GMM, showing that the GMM estimation of a shift parameter
can be realized by means of a coarse-to-fine estimation approach us-
ing a fast, DFT based, computationally efficient procedure. Then, we
have derived the best (minimum variance) CPS GMM estimator, and
we have carried out the theoretical performance analysis. Comparison
of the best estimator performance with those of the unweighted one
and with the CRB shows that at medium to high SNR the optimal
weighting definitely improves the estimator performance, and the
optimal weighted GMM estimator approaches the CRB.

APPENDIX I. STATISTICAL ANALYSIS

As far as the first order moments are concerned, since E{f̂}= f(θ)
we have:

E {J (ξ;W0(θ))} =

„
f(θ) − 1

2
· f(ξ)

«T

· W0(θ) · f(ξ)

The variances-covariances are evaluated as follows:

N · Cov {J (ξ1;W0(θ)),J (ξ2;W0(θ))}
= N · f(ξ1)T · W0(θ) · Cov

n
f̂ , f̂T

o
· W0(θ) · f(ξ2)

= N · f(ξ1)T · W0(θ) · Ω(θ) · W0(θ) · f(ξ2)
= f(ξ1)

T · W0(θ) · f(ξ2)

(I.1)

Finally, we report the first and second order moments of f̂ (A,θ,P) (ψi)
as evaluated in [4]:

E
n
f̂ (A,θ,P) (ψk)

o
= f (A,θ,P) (ψk) (I.2)

N · Cov
n
f̂ (A,θ,P) (ψk) , f̂ (A,θ,P) (ψl)

o
= f (A,θ,2P) (ψk) δk,l

− f (A,θ,P) (ψk) · f (A,θ,P) (ψl)

(I.3)

where δk,l is the Kronecker delta.

APPENDIX II. ON THE OPTIMAL WEIGHT MATRIX W0(θ)

The computation of the optimal weight matrix W0(θ)=Ω(θ)−1/N
requires the inversion of the covariance matrix of the measurements
Ω(θ)

def
= E{(f̂ − f(θ))(f̂ − f(θ))T}, which, according to (I.3), can be

expressed as follows:

N · Ω(θ) = K2(θ) − f(θ) · f(θ)T

where

K2(θ) = diag
n
f (A,θ,2P ) (ψ1) , . . . , f

(A,θ,2P ) (ψK)
o

Using the Woobury’s identity [8], we obtain:

W0(θ) = K(θ)−2 +
K(θ)−2 · f(θ) · f(θ)T · K(θ)−2

1 − f(θ)T · K(θ)−2 · f(θ)

= K(θ)−1

„
I +

K(θ)−1 · f(θ) · f(θ)T · K(θ)−1

1− f(θ)T · K(θ)−2 · f(θ)
«

K(θ)−1

(II.4)

Hence, the elements of the matrix W0(θ) take the following form:

||W0(θ)||k,l =
δkl

f (A,θ,2P) (ψk)

+
1

1 −
KX

m=1

“
f (A,θ,P) (ψm)

”2

f (A,θ,2P) (ψm)

· f
(A,θ,P) (ψk)

f (A,θ,2P ) (ψk)
· f

(A,θ,P) (ψl)

f (A,θ,2P) (ψl)

It is worth noting that the computations needed to evaluate (I.1)
are significantly reduced when the optimal weight matrix W0(θ)
is expressed in the form (II.4).
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Fig. 1. Normalized standard deviation of the phase estimation error
√

N ·StdDev{θ̂f} vs. SNR for 16-QAM and 32-QAM constellations: best GMM estimator
(dashed line), unweighted GMM estimator (solid gray), estimator of [6] (dot-dashed line) and CRB [7] (solid line).

Fig. 2. Normalized standard deviation of the phase estimation error
√

N·StdDev{θ̂f} vs. SNR for 64-QAM and 128-QAM constellations: best GMM estimator
(dashed line), unweighted GMM estimator (solid gray), estimator of [6] (dot-dashed line) and CRB [7] (solid line).

Fig. 3. Normalized standard deviation of the phase estimation error
√

N·StdDev{θ̂f} vs. SNR for 256-QAM and 512-QAM constellations: best GMM estimator
(dashed line), unweighted GMM estimator (solid gray), estimator of [6] (dot-dashed line) and CRB [7] (solid line).
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