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ABSTRACT 
This paper describes a Support Vector Machine (SVM)-
based obstacle recognition system that can recognize both 
vehicles and pedestrians using bimodal vision. Different 
techniques were investigated in order to recognize the de-
tected obstacles by the extraction of a compact and pertinent 
numeric signature from visible and infrared spectrum. A bi-
objective optimization (using error classification rate and 
classification time) is employed to assure the SVM-
parameters selection. A comparative study of individual 
visual obstacle recognizers versus fusion-based (at the fea-
ture, kernel and matching-score level) systems is performed. 
An important advantage of the fusion-based systems is their 
possibility to adapt to the environmental conditions due to a 
weighting parameter which establishes the importance of 
each sensor in a specific situation.  

1. INTRODUCTION 

Combining information from different sources contributes to 
forming a more complete image of an object to be detected 
or recognized in a road scene. Our purpose is to develop 
methods for an obstacle recognition system which combines 
visible (VIS) and infrared (IR) information in order to im-
prove the road security. A stereo vision system has been de-
veloped in our laboratory [1] for the obstacle detection task 
and our efforts1 aim to continue this work. Our main pur-
pose is to develop approaches to reduce the number of false 
alarms and to recognize the detected obstacles (like pedes-
trians, cars) by the extraction of a compact and pertinent 
numeric signature, followed by a Support Vector Machine 
(SVM) classification.  

Almost all obstacles categorization systems developed 
until now use an object detection step followed by an object 
recognition or a hypothesis verification step. During the de-
tection step a rectangular region of interest called bounding 
box (BB) is found and it is associated with a potential obsta-
cle; then, the recognition or verification process follows, 
where the false alarms are removed and the type of the object 
is determined.  

Many machine learning algorithms have been tested dur-
ing the last years, in order to solve the obstacle categorization 
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problems. Pedestrians are detected by multiple methods, us-
ing for example: shifted windows of various sizes over the 
image [2,3], symmetries and BB generation [4], an N-Cut 
segmentation [5], a shape finding method based on a hierar-
chy of templates [6]. Features on which the obstacle classifi-
cation module is usually based, are: Haar wavelets [2,7], 
Sobel edge features [3], set of simple appearance filters 
(similar to the Haar wavelets) [8], texture features obtained 
by high-pass filtering [9], Gabor features [7], vertical histo-
grams and aspect ratio [4], graphs which model the pedes-
trian shape [5], global features derived from a PCA analysis 
[6,7]. The obstacle template is learned and then classified 
with an SVM [2,5,7,9], or even with two SVMs (for different 
obstacle poses) [3], an Adaboost cascade classifier [8], a neu-
ral network [6,7,9] or a polynomial classifier [6]. 

Considering the price and the lack of interference prob-
lems, we chose two complementary vision sensors because 
the system must work well even under difficult conditions, 
like poor illumination or bad-weather situations (dark, rain, 
fog).  

For an obstacle categorization system, the use of a sin-
gle sensor cannot provide complex information about the 
environment in any weather conditions and any illumina-
tion situation. Different sensor inputs, data or even algo-
rithms could be combined together by the fusion process in 
order to provide complementary information and to in-
crease the system’s performances. We want to compare 
various solutions prior to implementing our final system 
because this would help in choosing the best solution for a 
given scenario. For example, we have to decide whether 
first to fuse data and then to detect/recognize obstacles in 
the fused data (low-level fusion) or first to detect/recognize 
obstacles in each image separately and then to fuse the de-
cisions (high level fusion). In this paper kernel-based and 
matching-score fusion techniques are compared for a pedes-
trian-vehicle SVM-based classification problem. In order to 
ensure the adaptation of the system to the environmental 
conditions, kernels or matching-scores could be weighted 
(with a sensor weighting coefficient) according to the im-
portance of the sensor in a specific environmental situation.  

Different global texture features have been extracted 
from the visible and infrared images in order to compute a 
fused feature vector encoding both types of data. Then, the 
feature selection process follows where just the most relevant 
features are retained for time reduction reasons. 
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2. FEATURES SELECTION FROM VISIBLE AND 
INFRARED IMAGES 

Our first goal is to assure a real time processing for the pro-
posed system. Because of the great number of possible ap-
pearances and shapes of obstacles on the road scene, a robust 
classification system should have the ability to learn multiple 
instances of the same object. This is generally achieved by 
learning the classifier with a great number of items per each 
class. But this growth of the image-database dimension will 
have an unfortunate contribution to the increasing processing 
time. Thus, we have to ensure a processing time as short as 
possible, while still maintaining a high accuracy rate. The 
reduction of the computational time corresponding to the 
feature extraction step and to the classification mechanism is 
quite mandatory. By using a feature selection process we 
intend to investigate the attribute’s pertinence, to evaluate 
different combinations of such features and finally to select 
the best suited ones (from the recognition rate and classifica-
tion time point of view). The founding of one convenient set 
of features is of the same importance as the founding of the 
most performing classifier. 

If the reduction of the feature vector is achieved with 
slight decrease of the accuracy rate (compared to the initial 
feature vector), we can consider the system as quite robust. 
Since feature extraction is desired to be fast, the 
performances of the entire system depends heavily on the 
choosen features. Therefore, to obtain a fast recognition 
system, the most representative features for each modality 
VIS and IR should be retained. In order to encode both 
visible and infrared information in one single feature vector, 
we computed a fused feature vector on which the feature 
selection mechanism has been applied. Futher on, we 
investigated different types of features in order to find the 
best feature combination for the fusion process. 

We computed features like width and height of the BB 
enclosing the object, followed by 169 features: 64 Haar and 
32 Gabor wavelets, 7 statistical moments (mean, median, 
mode, variance, standard deviation, skewness and kurtosis), 
8 DCT (discrete cosine transform), 16 cooc (obtained from 
the gray level co-occurrence matrix GLCM), 14 rle (run-
length encoding) and 28 laws (a set of convolution masks) 
features. For more detailed explanations about how the fea-
tures were extracted and how the feature vectors were ob-
tained, please consult [10] and [11]. From the VIS and IR 
images, we retained 2 individual feature vectors: VIS171 and 
IR171. In order to compute a fused feature vector (so a fea-
ture fusion case could be also considered), we fused 171 
VIS and 169 IR features. In this case of feature-fusion, the 
feature sets extracted from the VIS and IR images are fused 
in order to create a new feature set which will represents the 
object:  

 

( ) ( IRnkVISkFusednkk xxxxxxxx ,...,,,...,),...,,,...( 1111 ++ = )    (1) 
 

where n=340 and k=171. The obtained fused feature vector 
will be referenced in the paper as VisIr340. 

Most methods for feature selection involve searching 
the space of attributes in order to find a subset of relevant 

features that is most likely to predict the correct class. We 
used a Feature Selection Subset Evaluation (CfsSubsetEval 
[12]) method which is based on correlation and is combined 
with the best first search method. We applied the CfsSub-
setEval method on the fused feature vector VisIr340 and the 
evaluation takes into consideration the entire learning set. 
Thus, 42 features were selected and were grouped in 3 fea-
ture vectors: VisIr42, VIS17 and IR25. The feature vector 
VisIr42 was used in feature-fusion and kernel-fusion cases, 
with respect to equation (1), with k=17 and n=42. The other 
two corresponding feature vectors were used either for a 
monomodal classification (with no fusion scheme), or for 
obtaining the VIS and IR scores in the matching-score fu-
sion case. We used Weka (a very powerful tool including a 
collection of machine learning algorithms for data mining 
tasks) in order to evaluate the feature selection task. 

3. CLASSIFICATION BASED ON SUPPORT 
VECTOR MACHINES 

We used an SVM classifier in order to develop different 
obstacle classification schemes, considering both visible and 
infrared information. The high performance and robustness 
of the system will be assured by the fusion of these 2 types 
of information, weighted in such a manner to allow the ad-
aptation of the system to the environmental conditions. 
Therefore, our main purpose is to obtain a robust model 
which has to incorporate the information related to the envi-
ronmental context. One first possibility is the one presented 
in [11] where the single kernel was replaced by a multiple 
kernel for the SVM classifier. Because our multiple kernel is 
defined as a combination (a linear one) of single kernels, we 
can consider this first possibility as a kernel-fusion scheme. 
The second fusion system considered in this paper take into 
account the scores obtained from individual classifiers on 
each modality.  

A comparative study of individual visual and infrared 
obstacle recognizers versus fusion-based systems is per-
formed and the obtained results are presented in section 4.  

  
3.1 Support Vector Machines  

SVMs classifiers are based on kernel functions, which define 
similarities between pairs of data: ,)(),(),( zxzxK φφ=  

. Let the instance-label pairs nRzx ∈∀ , ( )iyix , , mi ,...,1=  

be the m training data, where  represents the input 
vector and 
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{ }1,1 −∈

ix
iy  the output label associated to the cor-

responding item . To obtain an SVM classifier with ker-
nels, one has to solve the following optimization problem:  
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the kernel function and  the Lagrange coefficients 
[13]. The coefficient C>0 is the penalty parameter that con-
trols the trade off between maximizing the margin hyper-

294



planes (which separates the classes) and classifying without 
errors. The optimal separating hyper-plane is used to classify 
the un-labelled input data using the following decision 
function: 

kx

ii ya ( ) ⎟⎟
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⎞
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⎝

⎛
+= ∑

∈ Sx
kik

i

bxxKsigny ,  (2) 

where S is the set of support vector items  and the offset 
value is calculated based on vector  and the training set. 
For the SVM classifier, we considered two types of kernels: 
polynomial (POL) and Radial Basis Function (RBF), the 
most used in the literature and those having only one parame-
ter. The POL kernel has the degree d  (with  for the 
linear kernel) and the RBF kernel has the bandwidth

ix
b a

1=d
γ . Dif-

ferent parameters of these kernels have been tested.   
We compared the system performances in the case of us-

ing no fusion scheme (using the feature vectors correspond-
ing to one modality VIS17 or IR25), with the feature-fusion 
case (using VisIr42), with the case corresponding to the ker-
nel-fusion and with the case of matching-score fusion (where 
the kernels and the scores are evaluated using the feature 
vectors VIS17 and IR25).  

 
3.2 Kernel based fusion  

The kernel methods represent data by means of a kernel 
function, which defines similarities between pairs of items. 
Our goal in the kernel-fusion case is to find a kernel that best 
represents all of the information available for the two types 
of images. Generally, classical kernel-based classifiers use 
only a single kernel (SK), while the applications from the 
real world need a combination of kernels in order to perform 
a better adaptation to the heterogeneous and multi-sensorial 
data. A common approach is to consider that the kernel func-
tion ( )ji xxK ,  is a linear combination of the basic kernels 
[11]:  
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The obtained multiple kernel will be the sum of two inde-
pendent kernels, each one corresponding to one modality 
VIS or IR and weighted with a value representing the im-
portance of that domain in the context. For our problem, the 
kernel functions  and  could be either RBF, or 
Polynomial, and could work with different hyperparame-
ters. Generally, the POL kernel has a degree 

 (with  for the linear kernel) and the 
RBF kernel has the bandwidth

VISSK

d

IR

}15,...,2,1{∈d =
γ , of the form  

with  and 

tq 10⋅=γ
}9,...,2,1{∈q )1,5( −−∈t . The results found in 

literature indicate that these discrete spaces of parameters 
are the most suitable for an efficient classification. A proper 
choice of these parameters is crucial for SVM to achieve 
good classification performance. The values C and d  orγ  
are called hyperparameters and they need to be determined 
by the user. They are usually chosen by optimising a valida-

tion measure (such as the k-fold cross validation error) on a 
grid of values (e.g. uniform grid in the (C, ) or (C, d γ ) 
space). 

Because kernel-fusion approach (which is MK from 
[11]) uses a linear combination of simple kernels for the 
feature vectors VisIr, the MK has the following parameters: 
the kernel type (RBF or POL), the context adjustment 
valueα , the penalty parameter C and the kernel parameters, 
according to each domain. Thus, our MK is entirely de-
scribed by the parameters set: (kernel,α , , ,C), 

where  and are the parameters corresponding to 
the kernel from the corresponding domain.  

VISp IRp

VISp IRp

 

3.3 Matching-scores based fusion  

For a matching-score fusion, multiple classifiers output a set 
of matching scores which represent the probabilities that one 
object belongs to different possible classes, based on differ-
ent modalities. The matching scores generated by the VIS 
and IR modalities for an object can be combined by the 
weighted parameter α  in order to obtain a new match score 
which is then used to make the final decision. If in equation 
(2) we would consider the value of the respective sum in-
stead of it’s sign, we can obtain the scores of the classifier. 
Consider an input pattern X, which could be classified into 
one of M possible classes {y1,y2,…,yM} based on the evi-
dence provided by N different classifiers. The input pattern X 
could be considered to have multiple feature vectors (xj, with 
j=1,…,N), with one feature vector for each classifier [14]. 
Given the feature vectors xj, j=1,…,N, the input pattern X 
should be assigned to the class yn if 

( ) ( )∑∑ =

N
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≥ jk

N

j jn xyPxyP
1

|| , where k=1,…,M. In order 

to consider the sensor weighted parameter, we will assign X 
to the class yn if ( ) ( )∑∑ = j1

α
=

N

j
⋅≥

N
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1
α

j

jx , 

where α  is the weighted value associated to each classifier, 

with∑ =
=

N

j j1
1α . In that way, for our bimodal problem with 

the classes pedestrian and vehicle, a new object X having the 
vectors xVIS and xIR will be assigned, for example, to the class 
pedestrian (P) if respects the relation:   
 

( ) ( ) ( ) ( )IRVISIRVIS xVxVPxPPxPP |1(||)1(| P)αααα −+≥−+   (4) 
 

Generally, a normalization step is necessary before the 
matching scores originating from different classifiers to be 
combined in the fusion process. In order to normalize the 
SVM scores, a min-max normalization method was used: 

)min()max(
)min(

SS
Ssn

−
−

=     (5) 

where s represents the score from the set of all scores of that 
classifier (in the validation set) before normalization, and n is 
the corresponding normalized score. This method maps the 
raw scores to the [0,1] range. Each simple kernel is involved 
with a weight that represents its relative importance for 
classification. The kernel selection process and the optimiza-
tion of the hyper-parameters are described in the following. 
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4. EXPERIMENTS AND RESULTS 

The VIS - IR image database used for our experiments is 
provided by the Artificial Vision and Intelligent Systems 
Laboratory (VisLab) of Parma University. This image data-
base has been obtained using an experimental vehicle 
equipped with two CCD and two far-infrared cameras. For 
more details about the aspects of the video acquisition 
module and the procedure used to calibrate the cameras, 
please refer to [15]. To the best of our knowledge, even 
many research groups used this database, they performed a 
pedestrian detection and a pedestrian/non-pedestrian classi-
fication. Our goal being to assign the correct label to a 
bounding box which may contain a possible road obstacle, 
we performed the discrimination of humans and vehicles. 
Examples of different VIS and IR objects (correlated each 
other) belonging to the class pedestrian or to the class vehi-
cle are presented in Fig.1. We created a preliminary data-
base containing 486 samples of road obstacles grouped in 
two sets: the learning set (80%, 389 objects) and the test set 
(the remaining 20%, 97 objects). On the learning set, 10-
folds crossvalidation has been performed in order to opti-
mize the parameters set and to choose the proper kernels. In 
the testing step, for the selected kernels from the crossvali-
dation step, we computed the accuracy rate in order to se-
lect the best suited kernel for our system.  

In Weka there is a collection of machine learning algo-
rithms, but there is no algorithm to treat the fusion problem. 
Thus, we implemented our fusion schemes, starting from a 
similar toolbox of classification developed in Matlab [16]. 

Having in mind that it is not known beforehand which 
parameters for the SVM kernels (C and or ) gives the 
best solution for one problem, there must be done a model 
selection (parameter search) that could identify good C, 

or . The result of this parameter selection process is 
that the classifier will be able to predict accurately un-
known data. For each RBF and POL kernels, a number of 
220 combinations (C; or ) revealed in Table I were 
experimented in order to find proper kernels for the kernel 
and matching score fusion cases. The parameter 

γ d

γ d

γ d

α  was 
tested with 11 values , obtaining 
11 possibilities for the fused information in the kernel 
fusion and the matching-score fusion cases, as equations (3) 
respective (4) show. For the optimization process, different 
values among a discrete set (which covers the domains 
early mentioned) are used: the penalty parameter 

{0.1,1,10, 20,30,…,200},  and 
. 

{0.0,0.1,0.

 ,5{ ⋅∈γ

}1.0

. ,10-4

2,...,0.9,

10-5

α∈

∈
{

C
∈d

}1 ..,
}10,...,2,1

 

  
 

Figure 1.  Examples of correlated images 
(visible and infrared) for pedestrians and cars 

Table I. Different combinations of parameters providing         
220 RBF and 220 POL kernels for SVM 

 
Kernel The penalty parameter C 

RBF 
γ  

POL 
d  

0.1 1 10 20 … 200 

5*10-5 1 K1 K2 K3 K4 … K22 
1*10-4 2 K23 
5*10-4 3 K45 
1*10-3 4 K67 
… … … 

 
 

… 

1*10-0 10 K199 K200 K201 K202 … K220 
 
In the crossvalidation process, the experiment was con-
ducted in order to select proper single kernels which will be 
used in the test step. This means we are looking for the 
SVM parameters sets for which good performances are 
obtained in the crossvalidation process. Table II contains 
the mean classification time and the error classification rate 
(which is calculated as 100 minus accuracy rate [%]) ob-
tained in the 10-folds crossvalidation process. What we 
mean by the term good performances: for the SVM kernel 
function, different combinations of hyperparameters could 
be revealed; (1) Ones could provide good accuracy rates, 
(2) others could present the advantage of a small processing 
time and (3) others can provide also good accuracy rates 
and a small classification time. In the crossvalidation proc-
ess, we are searching for this last type of kernels. The pro-
posed method is as it follows: first, the computed accuracy 
rates are used to obtain the corresponding error classifica-
tion rates (ERR); the second step is to perform the min-max 
normalization (equation 5) on both the error and the classi-
fication time. In that way, we obtained 2 values belonging 
to the [0,1] range, which were then multiplied. By this mul-
tiplication for each of the 220 RBF kernels and 220 POL 
kernels, we obtained 2 sets of values (one for RBF and one 
for POL) belonging to [0,1] which were then sorted from 
the smallest to the highest. From these 2 lists of values 
(where each value correspond to a kernel), we have two 
possibilities to choose the proper kernels: (1) to consider 
the first n kernels from the list (when n could be any integer 
value) or (2) to consider a threshold as a maximum value. 
Because there is for no use a kernel providing for example 
an accuracy rate of 70% but a classification time (after the 
min-max normalization) of 0.001, we performed the kernel 
selection  algorithm just on the kernels  having  an accuracy 
    

Table II. Mean classification time and error classification rate        
in the 10-folds crossvalidation step 

  

SK 
RBF POL 

  Classifier: 
           SVM 
 
Vector 

 
The feature 

 vectors ERR 
[%] 

Time 
[msec] 

ERR 
[%] 

Time 
[msec] 

VIS171 2.9 0.123 2.9 0.411 
IR171 2.9 0.096 2.9 0.318 

Initial vector 

VisIr340 2.9 0.195 2.9 0.468 
VIS17 11.3 0.053 11.8 0.259 
IR25 5.5 0.048 6.6 0.149 

Feature 
Selection 

VisIr42 4.7 0.049 5.3 0.158 
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rate above 80% and a classification time (after the normali-
zation) below 0.8. By considering the second approach, 
with a threshold value of 0.2, we obtained a number of 126 
kernels for the RBF and 143 for the POL kernels. Next, 
these selected kernels were used in the test step. 

IR25).  Additionally, these monomodal systems do not allow 
the system adaptation to the VIS-IR context, like a fusion 
scheme does through the weighted parameterα . Different 
types of kernels with different values for the hyperparameters 
could be tested in order to enlarge the searching space and to 
find the best global solution for our problem. For each RBF and POL kernel selected in the validation 

process, a number of 4 situations were obtained, from which 
3 are based on fusion. One of them uses monomodal feature 
vectors (Vis and Ir), in which case no fusion scheme was 
used. Another possible situation is the feature-fusion case, 
where the fused feature vector was used. Other situations 
(each with 11 possible vectors for testing) are the kernel-
fusion and the matching score fusion cases. The maximum 
accuracy rates obtained in all these cases are shown in Table 
III. In order to compare the results obtained from different 
classifiers, we added in Table III the accuracy rates provided 
by the k-nearest neighbour, with k=1 and k=3. We can re-
mark that the accuracy is greater in the case of fused modali-
ties than in the case of separate feature-vectors (where no 
fusion scheme was considered): the Vis feature vector gives 
the lowest accuracy rates, maybe also because it has the 
smallest number of features. All these fusion-based methods 
offer reasonable accuracy rates compared to the no-fusion 
cases. The main difference between the kernel-fusion ap-
proach and the matching-score one is that in the matching-
scores fusion case two different values could be considered 
for the complexity parameter C, because the final decision of 
the fusion system is taken after the classifiers provide their 
individual solution. From Table III, we can remark that the 
best accuracy rate is obtained by the match-scores fusion 
(RBF-RBF fusion, =0.01, =0.5, CVIS=100, CIR=50, VISγ IRγ

3.0=α ), and is higher even than the values obtained with 
the initial feature vectors (Table II, the ERR 2.9 is corre-
sponding to an accuracy rate of 97.1).  

As further improvements, we intend to integrate these 
fusion schemes in an entire obstacle-detection and classifica-
tion system. 

The purpose of the fusion system is to utilize the infor-
mation from both sensors in order to classify the detected 
obstacle. The weighted value α  allows the system 
adjustment to the VIS or IR domain according to the context. 
The VIS-IR weighted parameter α  should be adapted to the 
system based on the illumination and weather conditions.  By 
now, we do not have knowledge about any image database 
containing different illumination or weather situations, but 
we intend to develop approaches to simulate these difficult 
conditions. When such an image database will be available, 
the α  parameter would characterize a specific situation and 
it will be determined in the validation step. In that way, mul-
tiple classifiers will be available for different situations. In 
the test step, the sensor weighted parameter  α  will be de-
termined by some statistical measurements.  
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