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ABSTRACT
In this paper, we study a new GNSS/INS tight inte-
gration algorithm. The underlying idea is to obtain
user’s position as the solution to a constrained version of
the GNSS optimization problem, where classical trilat-
eralization is constrained by INS measurements. This
leads to a linearly constrained least-squares problem
that can be efficiently solved in worst-case polynomial
time. The performance of the algorithm has been val-
idated through simulations under challenging scenarios
(namely, multipath and weak signal conditions), show-
ing an improved performance w.r.t. GNSS stand-alone
and GNSS/INS Kalman filter solutions under the same
conditions.

1. INTRODUCTION

Global Navigation Satellite Systems (GNSS) is the gen-
erally concept used to identify those systems that allow
user position computation based on a constellation of
satellites. Specific GNSS systems are the well-known
American GPS or the forthcoming European Galileo.
Both systems rely on the same principle: the user com-
putes its position from measured distances between the
receiver and a set of visible satellites. These distances
are calculated estimating the propagation time that
transmitted signals take from each satellite to the re-
ceiver [1]. GNSS receivers are only interested in esti-
mating delays of direct path signals, hereafter referred
to as line-of-sight-signal (LOSS), as they are the ones
that carry information of direct propagation time. How-
ever, reflections distort the received signal in a way that
may cause a bias in delay and carrier–phase estimates
[2].

To cope with this problem, the use of Inertial Naviga-
tion Systems (INS) has been widely studied in the liter-
ature to improve the position solution provided by con-
ventional GNSS receivers [3]. An INS is a self-contained
navigator that generates an attitude, position, and ve-
locity solution. The sensors used in an INS are a triad
of gyros for measuring rotation and rotation rate and
a triad of accelerometers for measuring accelerations
or specific force. An INS is the combination of these
sensors, navigation algorithms, and the computer which
hosts the algorithms.
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The INS algorithms for generating attitude, position
and velocity involve, in part, performing the mathemat-
ical operation of integrating the outputs of these sen-
sors. Thus, any error on the output of the sensors leads
to correlated attitude, position, and velocity errors that
are potentially unbounded. A GNSS receiver, on the
other hand, generates position and velocity estimates
with bounded errors. Their error characteristics are
complementary, being this the main reason to integrate
GNSS/INS systems in many applications.

GNSS/INS integration architectures can be classified
into ultra-tight, tight and loose, depending on the de-
gree of integration between both systems [3]. An ultra-
tight GNSS/INS architecture based on particle filter-
ing was studied in [4]. The complexity of this integra-
tion approach is very high, and thus we rather focus on
the other two alternatives. In tight GNSS/INS integra-
tion, the GNSS and INS are reduced to their basic sen-
sor functions, that is, pseudorange, accelerations, and
gyro measurements are used to generate a single blended
navigation solution. In contrast, loose GNSS/INS inte-
gration makes the GNSS receiver and the INS operate
as independent navigation systems whose positions esti-
mates are blended to form an integrated third position
solution. In general, classical tight architectures provide
more accurate solutions than loose approaches [3]. Fur-
thermore, tight integration is able to keep extracting
useful information from a GNSS receiver in situations
where fewer than four satellites are visible. The goal of
this paper is to propose a reduced-complexity architec-
ture that while having comparable performance to ultra-
tight approaches, it is amenable from an implementation
stand point. For these reasons, we concentrate on tight
integration throughout the rest of the paper.

This paper is organized as follows. Section 2 in-
troduces the system model used to describe the GNSS
and INS dynamics. Section 3 provides an overview of
positioning algorithms with GNSS receivers and with
INS measurements, respectively. The proposed inte-
gration approach is presented in Section 4, where the
constrained least-squares problem is analyzed and dis-
cussed. Section 5 focuses on simulation results that val-
idate the proposed architecture and, finally, Section 6
concludes the paper.

2. SYSTEM MODEL

Bayesian Estimation offers an appealing framework for
the joint consideration of INS measurements and GNSS
pseudorange measurements. It is the natural way to ac-
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count for prior information provided by the INS, which
relies on a posterior probability density function to
estimate a vector δk given the set of available mea-
surements up to time instant k, y0:k. Besides, it is
the optimal framework to deal with dynamic systems,
through the discrete state-space approach. State es-
timates δ̂k ∈ Rnδ are recursively computed given the
measurements yk ∈ Cny at time index k, where nδ and
ny are the dimensions of the state and measurement
vectors respectively. For that, the evolution of target
states (on which measurements depend on) is modeled
using a discrete-time stochastic model, the state equa-
tion, which in general reads as

δk = Φk−1(δk−1,wk−1), (1)

where Φk−1 is a known, and possibly non-linear, func-
tion of the state δk and wk−1 is referred to as process
noise, which gathers any mismodeling effect or distur-
bances in the state characterization. The relation be-
tween the measurements and the states is modeled by
the measurement equation

yk = Hk(δk,nk), (2)

where Hk is a known, and possibly non-linear function,
and nk is referred to as measurement noise. Both pro-
cess and measurement noise are assumed white, mutu-
ally independent, and with known statistics.

2.1 INS Data: State Equation

A 16 state vector δ is considered for tight integration.
Three inertial error states are given for attitude, ve-
locity, accelerometer bias, gyro bias, plus one state for
receiver clock bias, respectively 1:

δ =
[

δψeT
δveT bb

a
T

bb
g
T

δpeT δt
]T

. (3)

Over a sufficiently short observation period, the as-
sumptions of non-rotating and flat Earth without grav-
ity are valid. To remove gravity is equivalent to saying
that the gravity model is perfect. The accelerometer
and gyro biases, bb

a and bb
g, and the bias of the receiver

clock, δt, are assumed not to have a known time varia-
tion.

Given the assumptions, the state equation (1) of the
INS at time index k admits a linear approximation of
the form

δk = Φk−1δk−1 + wk, (4)

where Φk−1 is the linearized transition matrix. At any
given time instant, the specific force measured by the
accelerometer, f b, and the body-to-Earth-frame coordi-
nate transformation matrix, Ĉe

b, are used to form the
transition matrix as

1where (·)e denotes the e-frame and (·)b denotes the b-frame.

Φ =




I3×3 03×3 03×3 03×3 Ĉe
bτs 03×1

Φ21τs I3×3 03×3 Ĉe
bτs 03×3 03×1

03×3 03×3 I3×3 03×3 03×3 03×1

03×3 03×3 03×3 I3×3 03×3 03×1

03×3 I3×3τs 03×3 03×3 I3×3 03×1

01×3 01×3 01×3 01×3 01×3 I1×1




,

(5)
where Φ21 = −

[(
Ĉe

bf
b
)
×

]
, [x×] denotes the skew sym-

metric matrix of x, and τs is the state propagation in-
terval [5].

To sum up, the INS give us information on the tem-
poral evolution of the variables of interest.

The main sources of state noise on the inertial nav-
igation solution are random walk of the velocity error
due to noise on the accelerometer specific-force mea-
surements and random walk of the attitude error due
to noise on the gyro angular-rate measurements. In ad-
dition, where separate accelerometer and gyro dynamic
bias states are not estimated, the in-run time variation
of the accelerometer and gyro biases can be approxi-
mated as white noise. The state noise covariance ma-
trix, Σw, assuming 16 states is defined in [5].

2.2 GNSS Data: Measurement Equation

When computing the position solution, measurements
are the computed pseudoranges of each visible satel-
lite. The i-th pseudorange is obtained after estimat-
ing the travel time (τ i) that the signal from the i-th
satellite takes to reach the receiver, i.e. ρi = cτ i where
c is the speed of light. The pseudorange model is pa-
rameterized by the unknown user position coordinates
(p = [x, y, z]T ) and the receiver clock bias (δt) as

ρi = %i(p) + c
(
δt− δti

)
+ εi, (6)

where satellites are indexed by i = 1, . . . , M and the
following definitions apply:

• %i(p) =
√

(xi − x)2 + (yi − y)2 + (zi − z)2 is the ge-
ometric distance between the receiver and the i–th
satellite. pi =

[
xi, yi, zi

]T are the coordinates of
the i–th satellite in the Earth-Centered Earth-Fixed
(ECEF) coordinate system, which can be computed
from the low–rate navigation message [1].

• δt is the bias of the receiver clock w.r.t GPS time,
which is unknown.

• δti is the clock bias of satellite i w.r.t. GPS time,
known from the navigation message.

• εi is a term that includes errors from various sources
such as atmospheric delays, ephemeris mismodeling
and relativistic effects among others.
The single point solution used in conventional GNSS

receivers is based on the linearization of the geometrical
problem consisting on the computation of p and δt from
a set of M estimated pseudoranges (where M ≥ 4).

As happen with the INS, the measurement equation
regarding GNSS measurements can also be linearized
but now with respect to an initial estimate of the posi-
tion, po = [xo, yo, zo]

T as
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yk = Hkδk + nk. (7)

Removing the time index k for the sake of simplicity,
the GNSS measurements amount to

y =




ρ1 + cδt1 − ε1 − %1
o

...
ρM + cδtM − εM − %M

o


 . (8)

In turn, the structure of the measurement matrix H
is

H = TM , T [ 04×12 I4×4 ] , (9)
where

T =




x1−x0
%1

o

y1−y0
%1

o

z1−z0
%1

o
1

...
...

...
...

xM−x0
%M

o

yM−y0
%M

o

zM−z0
%M

o
1


 . (10)

Notice that the structure of the measurement matrix
H is such that, out of the complete state vector δ, only
a reduced subset of variables

` = Mδ =
[

δpeT δt
]T (11)

impacts on GNSS measurements.
The measurement noise covariance matrix, Σn, ac-

counts for GNSS tracking errors, multipath variations,
satellite clock noise, and residual GNSS/INS synchro-
nization errors. It should ideally be modeled as a func-
tion of C/N0 and acceleration, though a constant value
is often assumed. The matrix Σn is diagonal, provided
that the pseudo-range measurements are not carrier-
smoothed [5].

3. STATE-OF-THE-ART POSITIONING
ALGORITHMS

This section presents two positioning algorithms. In
Section 3.1 the GNSS stand-alone solution is presented,
where no use is made of INS data. In contrast, Sec-
tion 3.2 sketches the conventional approach taken for
GNSS/INS tight integration.

3.1 GNSS stand-alone: Least-squares

Considering only GNSS measurements, an estimate of
the position can be obtained resorting to the least-
squares (LS) criterion

ˆ̀
k = arg min

`k

‖yk −Tk`k‖22, (12)

whose solution is given by the Moore–Penrose pseudoin-
verse2 of the linearized matrix: ˆ̀

k = T†kyk.
Other variants to the optimization in (12) exist

which are more sophisticated. For instance, if each ob-
servation is weighted proportionally to the quality of the
information provided (for instance, relating this measure
with the received power), the problem can be formulated
as a Weighted LS.

2We define the Moore–Penrose pseudoinverse of matrix T as

T† =
(
THT

)−1
TH .

3.2 Tight GNSS/INS approach: Kalman filter

The discrete state-space model presented in Section 2 is
linear. Therefore, it can be optimally dealt by a Kalman
filter. The Kalman filter approximates the posterior pdf
as Gaussian. Thus, posterior characterization is pro-
vided by its estimated mean and covariance, which are
obtained recursively at each instant

δ̂k|k−1 = Φk−1δ̂k−1|k−1 (13)

Pk|k−1 = Σw,k + Φk−1Pk−1|k−1Φ
T
k−1

δ̂k|k = δ̂k|k−1 + Kk

(
yk −Hkδ̂k|k−1

)

Pk|k = Pk|k−1 −Kk

(
HkPk|k−1HT

k + Σn,k

)
KT

k

where

Kk = Pk|k−1HT
k

(
HkPk|k−1HT

k + Σn,k

)−1
(14)

is the Kalman gain matrix.
This algorithm is the benchmark approach in tight

integration of GNSS and INS data.

4. TIGHT GNSS/INS INTEGRATION AS A
CONSTRAINED LEAST-SQUARES

PROBLEM

In the proposed tight GNSS/INS integration algorithm,
the GNSS solution (12) is enhanced by considering the
evolution of the inertial measurements, but in a different
way than the Kalman filter. The effect of the INS is to
reduce the feasible variable space. That is, the estimate
ˆ̀

k is now given by

ˆ̀
k = arg min

`k

‖yk −Tk`k‖22 (15)

subject to |`k| ≤ |MΦkδk−1|. (16)

Despite accumulated position errors provided by the
INS increase exponentially in time, the errors incurred
instantaneously within every integration duration are
indeed bounded and small. Thus, this essentially re-
stricts the true GNSS position error δpe

k
T at time index

k to lie within a spatial three-dimensional cube. Simi-
larly, the variance of the clock offset δt can be upper-
bounded as well. This is represented by (16).

The problem (15)-(16) can be rewritten in the fol-
lowing simpler form

ˆ̀
k = arg min

`k

‖yk −Tk`k‖22 (17)

subject to lk ≤ `k ≤ uk, (18)

where lk and uk are the vectors of the lower and
upper-bounds, defined as lk = −|MΦkδk−1| and uk =
|MΦkδk−1|. Clearly, integration takes place since the
measurements yk are taken from the GNSS, while the
restrictions lk and uk are obtained from the INS.

The problem (17)-(18) is a linearly constrained least-
squares problem and, thus, it is convex [6]. We shall now
get some intuition on the structure of ˆ̀

k by looking at
its Karush-Kuhn-Tucker (KKT) conditions.
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4.1 Interpretation

For any convex optimization problem with differentiable
objective and constraint functions, a point is optimal if
and only if it satisfies the KKT conditions. In particu-
lar, for the problem at hand (17)-(18) these conditions
reduce to

∂L (`k)
∂`k

= 0, (19)

λki (`ki − uki) = 0, λki ≥ 0 i = {1, . . . , dim{λk}},
(20)

νki (lki − `ki) = 0, νki ≥ 0 i = {1, . . . , dim{νk}},
(21)

where L (`k) is the Lagrangian function

L (`k) = ‖yk −Tk`k‖22 + λT
k (`k − uk) + νT

k (lk − `k) .
(22)

Thus, the optimal estimate satisfies

ˆ̀
k = T†kyk +

1
2

(
TT

k Tk

)−1
(νk − λk) , (23)

λki (δki − uki) = 0, λki ≥ 0 i = {1, . . . , 4}, (24)

νki (lki − δki) = 0, νki ≥ 0 i = {1, . . . , 4}. (25)

From the KKT conditions, we can get some inside
on the behavior of the proposed GNSS/INS integration
method. Basically, three regimes of operation can be
observed.

First, if the optimum unconstrained solution of the
i–th element in `k happens to lie between its lower and
upper limits, then λki = 0 and νki = 0 in order to
ensure conditions in (24) and (25). In this situation,
the optimum solution is calculated considering only the
GNSS pseudoranges, neglecting INS measurements.

Second, if the optimal unconstrained solution of the
i–th element is above the constraints, νki = 0. However,
in this situation λki plays a role by taking on a value
strictly greater than 0. Hence, the solution of the convex
problem is the GNSS solution with a correction term
due to the INS measurements. Analogously in the case
when the optimal solution is below the lower constraint,
λki = 0 and νki ≥ 0. Note that this is not equivalent to
simply solving the unconstrained least-squares problem
(12) and capping the solution using lk and uk.

Since our problem at hand is convex, strong duality
holds and the optimal solution can be equivalently found
as

ˆ̀
k = max

λk≥0
νk≥0

min
`k

L (`k; λk,νk) . (26)

Using dual decomposition [7], we can solve (26) in an
iterative manner. The resulting algorithm is described
next.

Algorithm 1 Constrained least-squares
Initialize:

λ0 = [11×4]
T

ν0 = [11×4]
T

for j = 1 to Niter do
Initialize:

β = 1+m
j+m

Compute:
ˆ̀

k = T†kyk + 1
2

(
TH

k Tk

)−1 (νj − λj)

λj =
[
λj−1 + β

(
ˆ̀

k − uk

)]+

νj =
[
νj−1 + β

(
lk − ˆ̀

k

)]+

end for

The parameter β = 1+m
j+m is the step-size, and m

is an non-negative integer whose value depend on the
problem.

Making use of Algorithm 1, an explicit description of
the procedure followed to run the proposed GNSS/INS
integration during a certain period of time Trun is as
follows

Algorithm 2 Novel tight GNSS/INS Integration
Initialize:

δ̂0 = [01×16]
T

for k = 1 to bTrun/τsc do
Initialize:

δ̂k = Φkδ̂k−1

uk = |MΦkδ̂k−1|
lk = −|MΦkδ̂k−1|

Solve ˆ̀
k using Algorithm 1.

end for

5. SIMULATION RESULTS

Although the formulation is general for any GNSS sys-
tem, simulations have focused on GPS signals. The ex-
periment has consisted in comparing the solution ob-
tained by a GPS (i.e. equation (12)), the solution
obtained when a commercial INS is integrated using
Kalman filter and that obtained when a commercial INS
is integrated considering the solution in Section 4. Here-
after, the former is referred to as GPS stand-alone, the
second is referred to as GPS/INS Kalman, and the latter
is referred to as GPS/INS constrained LS.

The performance of these algorithms was averaged
over 50 realizations of an scenario consisting on 7 satel-
lites in a realistic geometry whose carrier-to-noise ratios
were 45 dB-Hz. The receiver was a vehicle with a con-
stant velocity of 20 m/s describing a non-uniform tra-
jectory. Pseudoranges were computed for each satellite
according to (6), where the corresponding noise term εi

was drawn from N (0, σ2
ρi) whose variance is provided

by the Cramér-Rao Bound (CRB), which is the lowest
error bound that any unbiased estimator can achieve.
An approximation of the CRB was provided by [3] as
σρi = c·3.44·10−4√

(C/N0)iWτs

, where W is the filter bandwidth
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Figure 1: Multipath environment.

and τs the state propagation interval. The rationale of
using the CRB to generate pseudorange variances was
to avoid being dependent of any time-delay estimator.
In particular W = 1.1 MHz and τs = 1 ms. Thus, GNSS
and INS measurements were available every 1 ms. The
run time simulation Trun was fixed to 50 seconds. Pa-
rameters Niter and m of algorithm 1 were set to 25 and
5, respectively.

Two challenging scenarios were considered. The first
one simulated the effect of multipath, which is one of
the dominant sources of error in GNSS [2]. Figure 1
shows the RMSE performance of the three positioning
algorithms. Note that, whereas the GPS stand-alone
solution is severely degraded, both integrated systems
can cope with that situation thanks to the information
delivered by the INS. Interestingly the constrained LS
solution is able to improve upon Kalman filtering in both
average and variance.

The second scenario simulates a satellite signal
blockage (C/N0 = 15 dB-Hz). This could model a vehi-
cle driving below a bridge were there is a complete occul-
tation of the satellites. Figure 2 shows the degradation
of the stand-alone solution along with the robustness
of both integrated systems. Again, the performance of
constrained LS solution is better than the Kalman solu-
tion reducing the average RMSE during the occultation
period from 70 to 30 meters.

6. CONCLUSIONS

An architecture for integrating GNSS receivers with INS
measurements has been presented. The proposed ap-
proach is formulated as a constrained least-squares prob-
lem. A qualitative interpretation of the algorithm has
been provided and an algorithm based on dual decompo-
sition has been proposed for implementation. The pro-
posed approach has been validated by computer simula-
tion, were the integrated system has been compared to
the performance of a GPS stand-alone receiver and the
conventional GPS/INS integration using Kalman filter.
Two challenging scenarios were considered: multipath
and weak signal conditions.

While using the same input data as the Kalman fil-
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Figure 2: Satellite signal blockage during 10 s.

ter the constrained least-squares uses it in a different
way. Preliminary simulation results have shown perfor-
mance gains that, as a subject for future work, should
be verified for a wider set of scenarios.
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