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ABSTRACT

Recently, the incorporation of the research done in biologically in-

spired systems has shown satisfactory results. A promising research

area is the understanding of the human auditory systems and its

performance under noisy conditions. Moreover, the incorporation

of brain functions (cortical response) as an active part of the audi-

tory system seems a viable alternative to increase the robustness of

speech and speaker recognition systems. In this study, we propose

a simplified model of the mammalian central auditory system for

speaker verification systems. This model is based on a dimension-

expansion representation, attempting to capture the response of the

cortical cells. Then, by means of the Principal Component Analysis

(PCA) approach, we reduce the dimensionality and create speaker-

dependent features. Our results showed that by using our modeling

technique, we were able to improve the performance of speaker ver-

ification systems.

Index Terms— speaker recognition, biological system model-

ing, feature extraction, pattern classification, robustness.

1. INTRODUCTION

Speaker recognition can be defined as the process of automatically

recognizing who is speaking based on the information provided by

speech signals. The main technique is to find a set of features that

best represents a specific speaker voice. Speaker recognition systems

can be classified depending on their tasks in speaker identification

(SID) and speaker verification (SV) [1]. In this work, we will focus

on SV used to validate whether the speaker is who he or she claims

to be.

The speaker recognition process can be divided into two phases

independently of the task: enrollment and classification. In the en-

rollment phase, the expectation maximization (EM) algorithm [2] is

used to estimate a Gaussian Mixture Model (GMM) for each speaker

enrolled in the database. The EM algorithm provides maximum-

likelihood (ML) estimates for the unknown model parameter through

a training database. In the classification phase, we compute a score

based on the likelihood of test speech samples belonging to a certain

speaker. Then, based on the score the speaker recognizer will emit a

decision if the speaker is accepted or rejected.

In speech and speaker recognition, the corruption of the speech

signals by noise is one of the biggest challenges. Several methods

address the problem and attempt to compensate for session/channel/

time and microphone variability. Among those methods are cepstral

mean substraction (CMS) [3, 4], feature normalization [5], statisti-

cal estimation of speech features [6] and many other feature trans-

formations. Moreover, some studies have focused on mimicking and

modeling the functions of the human auditory system [7].

During the last years, most of the research done in the area of

speaker and speech recognition has focused on modeling the periph-

eral auditory system without considering the processing stages in

the central auditory system. The central auditory modeling was first

studied in [8], aiming to create a physiological model of the mam-

malian auditory system. This auditory models consists of two main

parts. The first part is the early auditory model that simulates the

processing at the periphery and produces an auditory spectrum, and

the second which models the auditory cortex in the central auditory

system. In this case, each neuron assumes a response area tuned

to a specific range of tone frequencies and intensities, producing a

dimension-expanded representation defined as cortical response [9].

The model presented in this study is well-defined and is based on the

notion of dimension expansion, where the frequency components of

the input signal are mapped to a more redundant representation in

the central auditory system. The purposes of using this representa-

tion is to obtain information that the peripheral auditory systems are

unable to extract and the inclusion of the brain functions as an active

part of the recognition process.

In this work, we propose a simplified model of the central audi-

tory system, focusing on the creation of speaker-dependent acoustic

features. This approach consists on reducing the dimensionality of

the expanded set of features based on the statistical characteristics of

each speaker enrolled in the database.

The rest of the paper is organized as follows: section 2 presents

an overview of the auditory system, section 3 describes the simpli-

fied cortical response, section 4 illustrates the speaker verification

framework, section 5 describes the experimental setup of our speaker

verification system, section 6 and 7 show the results and conclusions

of this work.

2. AUDITORY SYSTEM

The auditory spectrum is a spectral representation produced by an

early auditory system consisting of transformations done in the pe-

ripheral auditory system, from the ear to the cochlear nucleus. The

auditory systems receives a speech signal and passes through a bank

of cochlear filters. In this work, the transformations done in the

peripheral auditory system are modeled as 3 different stages: pre-

emphasis, windowing (usually Hamming) and power spectrum of

the speech signal usually obtained from the magnitude of the Dis-

crete Fourier Transform (DFT) of the speech signal defined as
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where sr is the input speech signal after being pre-emphasized and

windowed, k represents the discrete frequency variable, and |Ŝk| the

absolute value of the DFT. After these transformations, the extracted

features are processed by the primary auditory cortex area of the

brain.

3. SIMPLIFIED CORTICAL RESPONSE

In the primary auditory cortex, the auditory spectrum is encoded by

a population of cortical cells, each of which is characterized by a

neural response area that represents the amount of excitation induced

by different frequencies [8]. The response areas are organized along

three dimensions: central frequencies, scale (bandwidth) and phase.

The central frequencies denote the frequencies at which the neurons

are excited, the scale denotes the spread area of the response and the

phase parameterizes the symmetry.

Figure 1 shows a three dimensional conceptual representation of the

cortical response. In this work, we will focus only on the modeling
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Fig. 1. Conceptual representation of the cortical response.

of the central frequencies and the scale. We assume that the response

of each of these filters is triangular and is based on a well-known

implementation, and a way of comparison with the Mel Frequency

Cepstral Coefficients (MFCC). The simplified cortical response is

given by

xn(i) =

R−1
2

∑
k=1

A
(i)
k
|Ŝk|, 1 ≤ i ≤ M, (3)

where |Ŝk| is the power spectrum defined between 0 ≤ k ≤
R−1

2
,

R is the number of points for the magnitude spectrum, A
(i)
k

is the

sample magnitude response of the i triangular filter, and M is the

total number of filters in the filter-bank. M is defined as M = M1 ∗M2

where M1 is the number of mel central frequency channels and M2

is the number of scale channels.

Using the previous representation, we obtain an expanded set

of features with a larger number of dimensions. The dimensional-

ity of this new set of features yields a computational memory prob-

lem. To tackle this problem, we use the Principal Component Anal-

ysis (PCA) approach. The PCA is defined as an orthogonal linear

transformation of the data to a new coordinate system where the

new components are ordered descendingly depending on the greatest

variance.

For our specific case, we compute the PCA from the sample

covariance matrix of each speaker enrolled in the database. In order

to obtain the sample covariance matrix is necessary to calculate first

the sample mean defined as

µx =
1

N

N

∑
n=1

xn, (4)

where xn is a feature vector and N is the total number of feature

vectors.

Then, the sample covariance matrix is defined as

Cx =
1

N −1

N

∑
n=1

(xn −µx)(xn −µx)
T
. (5)

From (5), we can obtain the PCA components by assuming the

transformation y = Px with diagonal covariance matrix Cy defined

as

Cy = PCxP
T
, (6)

where P are the principal components of x.

Considering j components (row-vectors) of P, we can trans-

form and reduce the dimensionality of the feature set by using the

transformation y = Px. Moreover, P defines a speaker-dependent

transformation matrix. To reduce our cortical response feature set,

we consider the components with higher variances.

Figure 2 shows the process of the Simplified Cortical Response

(SCR) from speech samples to the speaker-dependent feature set.

Fig. 2. Diagram of the Simplified Cortical Response.

4. SPEAKER VERIFICATION FRAMEWORK

SV is a statistical hypothesis test between two hypothesis [10]. H0

denotes the hypothesis to accept an utterance {xt}
T
t=1 as being pro-

duced by the target speaker. H1 denotes the hypothesis to reject an

utterance {xt}
T
t=1 as being produced by the target speaker. Each trial

consists of a test utterance and a claimed identity. From each trial a

log-likelihood ratio is computed and a score θ is determined as

θ = ln

(

p(x|H0)

p(x|H1)

)

; θ

accept

≥
≤

reject

τ. (7)

where τ is the threshold that minimizes the expected cost for errors.

The greater the score obtained, the more likely that the trial is the

target speaker. H0 represents the Gaussian Mixture Model (GMM)
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for the target model, and H1 represents the impostor model. The

impostor model is better known as the universal background model

(UBM) which is trained using the information from a pool of speak-

ers different from the target database.

In this work, we consider the EER (equal error rate) and the DET

curve[11] as the performance measure.

5. EXPERIMENTAL SETUP

The experiments were conducted using the female speakers from the

2004 NIST-SRE “core” corpus [12]. Each speech file, after remov-

ing silence at the beginning and end, was segmented into frames

of 25 ms length with an overlap of 10 ms. Each frame was pre-

emphasized and Hamming windowed. Then, we implement our SCR

over the telephone bandwidth (300-3400 Hz) using 134 mel central

frequency channels and 16 scale channels. The scale channels are

defined in mel scale as follow

Bw/mel Bw/mel Bw/mel Bw/mel

1 934.8387 5 545.8816 9 296.1308 13 152.5265
2 823.6421 6 471.3595 10 251.8695 14 128.4962
3 721.7854 7 405.2574 11 213.6092 15 108.0720
4 629.2541 8 347.0471 12 180.7024 16 90.7644

The reason for choosing these frequency bands is that humans

can not perceive any difference on a 20% range of the central fre-

quency. After obtaining the SCR, we reduce the dimensionality

of the features by applying the PCA for each speaker enrolled in

the database. By selecting the 13, 20, and 25 highest components,

we create the speaker-dependent set of features for the background

model, training and testing.

Afterwards, we train a 512 mixture component speaker-

dependent background model, and a speaker model using MAP

adaptation [2]. For comparison purposes, we use MFCCs as baseline

system. As in the case of the SCR, each speech file, after removing

silence at the beginning and end, was segmented into frames of 25

ms length with an overlap of 10 ms. Each frame was pre-emphasized

and Hamming windowed. Then 13-th (truncated from 23-th) order

MFCCs were created. The training and the evaluation are similar to

the cortical response.

6. EXPERIMENTAL RESULTS

Figure 3 shows an example of the cortical filter-bank. As mentioned

in the previous section, the SCR considers the frequency and the

scale channels. In this figure, we show the filters for three different

scale channels, each of them with 135 central frequency channels .

Fig. 3. Example of the cortical filter-banks.

Figure 4 presents an example of the cortical response to a speech

frame input. As mentioned in the experimental setup, 134 central

frequency and 16 scale channels were used for our experiments.

These channels are defined in the horizontal and the vertical axis,

respectively.
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Fig. 4. Response of the neurons to the input of one frame of speech.

Figure 5 shows the DET curves for the MFCCs and the SCR with

different components. We observe and improvement as the num-

ber of components increases, contrary to the MFCCs case. Table 1

  0.1   0.2  0.5    1     2     5     10    20    40  

  0.1 

  0.2 

 0.5  

  1   

  2   

  5   

  10  

  20  

  40  

False Alarm probability (in %)

M
is

s
 p

ro
b

a
b

ili
ty

 (
in

 %
)

 

 

Baseline

SCR 13 Dimensions

SCR 20 Dimensions

SCR 25 Dimensions

Fig. 5. DET curves for the baseline and the Simplified Cortical Re-

sponse.

shows the EER for each system. We observe that our SCR outper-

forms the MFCCs as the number of PCA components increases. A

similar increase in dimensions for the MFCCs usually degrades the

performance of the system. Although the baseline has a high EER,

Baseline SCR 13D SCR 20D SCR 25D

23.78% 22.51% 20.76% 19.61%

Table 1. EER comparison.

we must consider that the purpose of applying the cortical response

is to explore its pure effectiveness as a new set of speaker-dependent

features compared to the MFCCs and not to compete with a full-

operational SV system. SCR features are different from MFCCs;
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hence the methods developed to improve the performance of the

MFCCs are not valid for the SCR features.

Figure 6 shows the DET curves for MFCCs (baseline) and the 25

component SCR warped features [5]. We observe that for this case

the SCR performance is poor due to the warping process applied.

Further study is required to integrate the SCR with all the compo-

nents of the SV system.
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Fig. 6. DET curves for the baseline and the SCR (Warped features).

7. CONCLUSIONS

In this work, we developed a set of speaker-dependent features based

on a biologically inspired system. This new set of features consid-

ers the neurons response in order to achieve more robustness against

the effects of the noise. Using our set of features, we were able

to improve the performance of our system. This is an ongoing re-

search and requires further study in the sense of incorporating all

the additional elements proper for a baseline SV system and other

dimensionality reduction methods.
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