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ABSTRACT

Nonnegative Matrix Approximation (NNMA) is a very well
known technique of multivariate data analysis. However, in
its basic form it provides very little control over its behaviour.
This article explores possible extensions to this method in the
context of multiple frequency estimation: using a parameter-
ized distortion measure, enforcing harmonic structure on the
basis matrix and introducing additional regularizations. We
provide the reader with three regularizations useful for mul-
tiple pitch estimation and propose an objective way of evalu-
ating the performance of NNMA-based pitch estimators. Fi-
nally, we use this evaluation method to train the parameters
of our regularized harmonic NNMA and present the results.

1. INTRODUCTION

Music Information Retrieval (MIR) is a dynamically grow-
ing interdisciplinary field of science that aims at retrieving
useful information from musical signals, both acoustic and
symbolic. One of the most important tasks that belong to
this domain is the multipitch analysis—a task of estimat-
ing multiple simultanous pitches present in a musical sig-
nal. Unfortunately, pitched sounds in most cases consist of
a fundamental tone and its overtones—tones with frequen-
cies being integer multiples of the fundamental frequency.
Presence of these multiple tones corresponding to multiple
pitched sounds makes this task very difficult. Furthermore,
in musical signals, it is very common to have rational propor-
tions between fundamental frequencies of different pitched
sounds, as such signals sound much more pleasant to the hu-
man ear, and, as a consequence, some pitched sounds share
overtones between themselves, which further complicates the
analysis process.

One of the most common ways of looking at the prob-
lem of multiple pitch estimation is as a matrix factorization,
where the spectrogram matrix is approximated with a sum
of N rank-1 matrices (or, equivalently, a product of two full-
rank matrices). A common way of performing this factor-
ization is by means of the Nonnegative Matrix Factorization
(NMF, proposed in [9], with a fast and convinient algorithm
given in [8]), also known as Nonnegative Matrix Approxi-
mation (NNMA) [13]. In this paper we will use the latter
name, unless refering to papers that use the former one. This
technique decomposes a nonnegative (having only nonneg-
ative elements) magnitude or power spectrogram matrix X

(later referred to as the data matrix) into a product of two,
also nonnegative, matrices A and S:

X∼= AS = X̃. (1)

The decomposition is being done by minimizing a dis-
tortion measure between the data X and its approxima-
tion AS. The original algorithm from [8] was designed
to minimize Euclidean distance or I-divergence, which are
still most commonly used. This method has gained a wide
recognition among researchers in the Music Information Re-
trieval field—more than half of last year’s (2008) entries to
MIREX’s task of multipitch analysis was based on Nonneg-
ative Matrix Factorization [2].

NNMA approximates each column of the data matrix
with a linear combination of basis vectors at (columns of
A):

x̃t = ∑
n

sn,tat , (2)

where n is the basis vector number and t is the time index.
Because the matrices are nonnegative, only additive mixtures
of nonnegative basis vectors (interpreted as spectra of indi-
vidual notes) are possible, which is consistent with the way
individual note sounds are combined to form the musical sig-
nal we aim to analyse. Therefore, we call the coefficient ma-
trix S the note activity matrix, since it is assumed to contain
amplitudes of notes.

Different variations and extensions of the NNMA algo-
rithm have been used for multipitch analysis: the regular
NMF [12], penalized NMFs, such as the Nonnegative Sparse
Coding (NNSC) [4, 3], or NMF with basis vectors extended
to contain spectrotemporal signatures (a number of conse-
quent data frames), such as Nonnegative Matrix Factor 2-
D Deconvolution (NMF2D) and Sparse Nonnegative Matrix
Factor 2-D Deconvolution (SNMF2D) [11]. NMF2D and
SNMF2D use a single signature for every note (of a single
instrument), making use of the shift-similarity of logarithmic
frequency scale spectra of notes played on a single instru-
ment. All of these methods, however, when used directly,
do not guarantee that the results will be usable for multipitch
analysis, i.e. that the basis matrix will contain note spec-
tra and the coefficient matrix their activities. This might be
true for a very unrealistic case, when note events occur inde-
pendently and sparsely, note spectra do not change their har-
monic structure over time and the number of basis vectors
correspond to the number of different notes actually occur-
ring in the analyzed signal, but even that there is no guaran-
tee NNMA will perform multipitch analysis by itself. That
is why we strongly believe that in order to use NNMA for
that purpose, we need to develop additional constraints and
penalties, which are specific to musical signals.

In [10] we have proposed a method we called Har-
monic Nonnegative Matrix Factorization (HNNMA), which
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Figure 1: Multiple pitch estimation accuracy for different
values of r. Gray dashed lines mark points that correspond
to the Euclidean distance, the I-divergence and the Itakura-
Saito divergence.

extended the regular NNMA by adding regularizations and
a harmonic constraint on the basis matrix. In this paper we
further investigate this approach and discuss a range of meth-
ods based on NNMA generalized to Bregman divergences,
for which we propose new regularizations: a weighted mu-
tual decorrelation penalty and a time smoothness objective.
We then propose an objective method of evaluating the note
activity in the context of multipitch estimation and use this
measure to train the parameters of the proposed regularized
harmonic NNMA.

2. NONNEGATIVE MATRIX APPROXIMATION

For the purpose of clarity, the following matrix notation is
used throughout this article. |A| = ∑i, j Ai, j is shorthand
for sum of all matrix elements (1-norm in case of a non-
negative matrix), and (A⊙B)i, j = Ai, jBi, j is the Hadamard

(element-wise) product between two matrices. Unless stated
otherwise, all other matrix operations in this paper are also

element-wise, in particular matrix division A

B
and power A

p.
A Bregman divergence is defined as:

Dϕ(X,Y) = |ϕ(X)−ϕ(Y)−ϕ ′(Y)(X−Y)|. (3)

where ϕ : R → R is a convex generating function with a
continuous first derivative. NNMA is an optimization prob-
lem with the penalty function being a Bregman divergence
between the data X and its approximation AS and with a
constraint of nonnegativity [6]. It can be easily solved us-
ing the Karush-Kuhn-Tucker conditions [13]. By minimiz-
ing the divergence between the data X and its approximation
AS we obtain a pair of multiplicative update rules that, used
alternately, leads to the optimal factorization:

S← S⊙
A

T (X⊙ϕ ′′(AS))

AT (A⊙ϕ ′′(AS))
, (4)

A←A⊙
(X⊙ϕ ′′(AS))ST

(AS⊙ϕ ′′(AS))ST
. (5)

In practice, the I-divergence version of NNMA is usually
preferred as the distortion measure, as it yields sparser rep-
resentations. However, it would be beneficial to investigate
if it truly gives the best results in the context of multipitch
analysis. We have defined a subset of the Bregman family of
distributions, which includes all commonly used distortion
measures. An r-divergence is a divergence generated by a
function, which second derivative is of the following form:

ϕ ′′(x) = x−r, (6)

where r is the shape control parameter. The resulting di-
vergence is in practice identical (when r = 2− β ) to the

beta divergence proposed by Kompass in [7] with only two
small small differences. Firstly, there is no single equation
for an r-divergence because of the inherent ambiguity of in-
tegration. This means that it is slightly more general, e.g.
we can get both KL-divergence D(x,y) = x log x

y
and the I-

divergence D(x,y) = x log x
y
− x+ y for r = 1 (and the result-

ing NNMA algorithm would be identical for both), but only
the I-divergence for β → 1. Secondly, we avoid definition
problems for the limiting cases of β → 0 and β → 1. Four
important divergences belong to that family: Euclidean dis-
tance for r = 0, the KL- and I-divergence for r = 1 and the
Itakura-Saito divergence for r = 2, which are commonly used
for signal analysis. For r-divergence the NNMA algorithm
becomes simply:

A←A⊙
(X⊙ (AS)−r)ST

((AS)1−r)ST
, (7)

S← S⊙
S

T (X⊙ (AS)−r)

ST ((AS)1−r)
, (8)

and for r = 0 and r = 1 these equations become identical to
the ones presented in [8].

A quick analysis of multipitch estimation results for dif-
ferent values of r is depicted in Fig. 1 and shows that it is
not the commonly used divergences (r ∈ 0,1,2), for which
best results are obtained. Instead, r ∼= 1.7 yields the best F-
measure for a regular NNMA, and r = 0.948 is found to be
optimal for the proposed regularized NNMA (see section 5).

3. CONSTRAINING

Using an unconstrained basis matrix poses a series of prob-
lems. Basis vectors need to be analyzed and assigned to a
particular pitch prior to the analysis of the note activity ma-
trix, which introduces additional errors to the process (com-
pare Figure 4). However, because note events do not occur
sparsely and independently, and their spectra change greatly
over time, using an unconstrained basis usually results in ba-
sis vectors that do not even have a harmonic structure, mak-
ing the pitch estimation difficult or impossible. Furthermore,
results for an unconstrained basis are very different each time
the algorithm is run, and thus very difficult to compare and
evaluate. That is why we firmly believe that a harmonic ba-
sis matrix with vectors constrained to harmonic structures
strictly corresponding to notes (of, for instance, the diatonic
scale) is a must when it comes to multipitch analysis. Analy-
sis of the note activity matrix in this case is straightforward,
as each row contains amplitudes of a single note.

Basis harmonicity can be achieved in three ways. We can
either: use a fixed harmonic basis vectors (i.e. only use eq.
4), use a basis matrix pretrained on solo instrument data, or
adapt the harmonic structure to the data. In the first approach
we use an artificial harmonic spectra with partials’ ampli-
tudes decreasing exponentially with frequency. It would
seem like an oversimplification, but, as we will see later,
this method yields very good results, especially when addi-
tional penalties are used, and the overfitting present in the
other two methods is avoided. In the second approach, we
use averaged note spectra obtained from the recordings of
piano taken from the RWC database, which gives better re-
sults than the first method, but the performance drops slightly
when different instrument is used.

In the third approach, proposed by us in [10], we use an
artificial harmonic basis from the first method and adapt it
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in a way that changes only the partials’ amplitudes, leav-
ing the overall harmonic structure intact. This can be eas-
ily achieved without modifying the existing algorithm, be-
cause zero-valued elements of basis vectors remain at zero
throughout the learning process due to its multiplicative na-
ture. We could therefore initialize the basis to have zeros ev-
erywhere but at the positions of fundamentals of notes from
a specific range of the 12-TET (Twelve-tone Equal Temper-
ament) scale and at their harmonics, thus constraining the
solution space to harmonic factorizations only.

4. REGULARIZATIONS

NNMA can be extended to include additional penalties on
both matrices. In this case, instead of minimizing a Bregman
divergence, the following objective function is minimized

Dϕ(X,AS)+α(A)+β (S), (9)

where α and β are the penalty functions. The update rules
for NNMA become

A←A⊙
(X⊙ϕ ′′(AS))ST

(AS⊙ϕ ′′(AS))ST +∇Aα(A)
, (10)

S← S⊙
(X⊙ϕ ′′(AS))ST

(AS⊙ϕ ′′(AS))ST +∇Sβ (S)
. (11)

This allows the user to have greater impact on the result-
ing factorization. However, caution must be exercised when
designing these additional penalty functions, as they might
cause the solution to become negative and make the algo-
rithm unstable. Nevertheless, in our experience, using only
penalties with positive derivative led to a stable algorithm.
Among the note activity matrix penalties used most success-
fully by us, are: the sparseness and the cross-correlation
penalties, and the time smoothness objective.

To obtain sparser note activities we employ the lp-norm
with p < 2:

β1(S) = µ1|S
p|, (12)

∇Sβ1(S) = µ1 pSp−1. (13)

The cross-correlation penalty can be used to decrease the
crosstalk between activities of different notes. The penalty
function is defined as:

β2(S) = µ2 ∑
i, j,k

Wi, jSi,kS j,k = µ2|W⊙ (SS
T )|, (14)

where W is a weighting matrix. In order to penalize only
cross-correlation between different notes, we set Wi,i = 0.
Also, the weights will usually only depend on the interval
between the notes and the weighting matrix will become cir-
culant. In this case we simply get:

∇Sβ2(S) = 2µ2WS (15)

By using this penalty we can also decrease the number of the
most common pitch detection errors: octave errors (by in-
creasing all weights Wi ≡ 0 (mod 12)), major third errors (by
increasing all Wi = 4) and perfect fifth errors (by increasing
all Wi = 7). An example of a weighting matrix constructed
in this manner is presented in Fig. 3a.
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(a) Note activity sparsity, r = 1
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(b) Note activity decorrelation, r = 1
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(c) Temporal smoothness, r = 0

Figure 2: Accuracy of multipitch analysis when using differ-
ent additional objectives. A fixed harmonic basis was used
and the all other regularization parameters were kept at zero.

A very similar penalty can be used to encourage temporal
smoothness in a way quite similar to the one presented in
[14], but using less complicated penalty function:

β3(S) =−µ3 ∑
i, j,k

Vi, jSk,iSk, j =−µ3|V⊙ (ST
S)|, (16)

where V is a weighting matrix. As with the note decorre-
lation penalty, using a circulant matrix with nullified main
diagonal leads to a simple derivative:

∇Sβ3(S) =−2µ3SV. (17)

As mentioned before, using regularizations with negative
derivative may lead to instability, so we used exp(β3(S)) in
place of 17, which should lead to equivalent solutions thanks
to monotonicity of the exponential function. An example of
weighting matrix V is depicted in Fig. 3b.

(a) (b)

Figure 3: Circulant weighting decorrelation matrices: (a) a
matrix that penalizes cross-correlation between activities of
close notes and between notes in a common harmonic rela-
tion (octave 1:n, major third 5:4 and perfect fifth 3:2), (b) a
matrix that encourages temporal smoothness; an exponential
smoothness profile was used.
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5. RESULTS

Different methods of evaluating multipitch analysis results
have been proposed by researchers, but we would like to look
at the problem in a somewhat narrower context of NNMA al-
gorithms, and focus our attention only on the resulting note
activity matrix. We therefore propose to directly compare
this matrix with a ground truth matrix created from presum-
ingly available MIDI data.
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(b) Unconstrained and unpenalized NNMA
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(d) Harmonically constrained and penalized NNMA

Figure 4: Original MIDI information and multiple pitch es-
timation results for different variants of spectrogram factor-
izations obtained for Chopin’s Nocturne in B flat minor, Op.
9, No. 1 with maximal polyphony of 6 simultanous notes.
Horizontal axis correspond to time and the vertical axis to
piano key number (exluding subfig. (d), for which there is
no correspondance between basis vector number and piano
key).

We have generalized precision (P) and recall (R) for real-
valued data:

P =

(

∑
t,n

tpt,n

)(

∑
t,n

tpt,n + fpt,n

)−1

, (18)

R =

(

∑
t,n

tpt,n

)(

∑
t,n

tpt,n + fnt,n

)−1

, (19)
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Figure 5: Results of multipitch analysis of Chopin’s Noc-
turne in B flat minor, Op. 9, No. 1 obtained for different har-
monic bases and NNMA variants. (a) Fixed harmonic basis,
(b) basis pretrained on RWC piano recordings, (c) adaptive
harmonic basis, (d) adaptive harmonic basis with additional
regularizations, (e) fixed harmonic basis with regularizations,
(f) pretrained basis and regularizations, (g) geometric aver-
age of all methods, (h) averaged activities after simple me-
dian filtering.

where tp is the true positive, fp is the false positive and fn is
the false negative. They are defined as:

tpn,t =

{
Sn,t/Gn,t if Gn,t 6= 0
0 if Gn,t = 0

, (20)

fpn,t =

{
Sn,t if Gn,t = 0
0 if Gn,t 6= 0

, (21)

fnn,t =

{
Gn,t −Sn,t/Gn,t if Gn,t 6= 0
0 if Gn,t = 0

, (22)

where n, t are the indices of elements from the note activity
matrix corresponding to the note number and time, respec-
tively.

All of above definitions require that both the note activity
matrix S and the ground truth matrix were normalized to the
range [0,1]. Intuitively, when we notice that ∑t,n tpt,n is the

amount of correctly identified note activity, ∑t,n tpt,n + fpt,n

is the total detected note activity, and ∑t,n tpt,n + fnt,n is the

amount of true note activity, it follows that the precision is a
measure of how much of the detected note activity matches
the ground truth data, and the recall is a measure of how well
the note activity is detected. We can now use the standard
F-measure definition:

F =
2PR

P+R
. (23)

In our experiements we have used a dataset of 216 MIDI
sequences recorded on an electric piano [5] and audio syn-
thesized frmo them using a realistic and accurate Steinway
Model-C grand piano sound font[1], which is a setup sim-
ilar to the one used in the MIREX competition piano tran-
scription task. The dataset was divided into 196 files used
for training the parameters and 20 files used for evaluation.
During the training, parameters values r, µ1, µ2 and µ3 were
randomized in each iteration from within the range of [0,3],
and the resulting note activity matrices were evaluated using
the proposed F-measure. The best set of parameter values
(r = 0.948, µ1 = 4.643, µ2 = 0.185 and µ3 = 2.856) was
found and used in all further experiments.

Fig. 2 shows how the changes in the F-measure of the
note activity matrix for different values of µ1, µ2 and µ3. In
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Figure 6: Results obtained for the randomly selected 20
pieces from the Chopin dataset and parameters obtained by
training.

each case one coefficient was changed while the other were
fixed at zero. A gain in accuracy when using the proposed
penalties is evident. Fig. 5 depicts results obtained for differ-
ent variants of spectrogram factorizations performed on the
same file. We had our greatest expectations in the adaptive
harmonic basic approach, surprisingly however, the adaptive
harmonic basis gave the poorest results if the additional reg-
ularizations were not used (Fig. 5c), and even with these reg-
ularizations (Fig. 5d) the penalized fixed harmonic approach
(Fig. 5e) gave slightly better results. This poor performance
can be explained as a result of overfitting. Combining all 3
approaches by taking a geometric mean of all 3 note activity
matrices (geometric mean was chosen in order to boost the
values common for all matrices and diminish random false
positives) resulted in a 5% boost in the F-measure (Fig. 5g).
Results obtained for the 20 pieces selected out of the dataset
is presented in Fig. 6.

6. CONCLUSION

We have discussed different ways in which the NNMA can
be extended to better fit the task of multipitch analysis: by
using a parameterized distortion measure, by enforcing har-
monic structure on the basis matrix and by introducing ad-
ditional regularizations. These modifications have additional
benefit of parameterizing the method, allowing for fine tun-
ing to fit specific data and optimize its behavior. We have
also proposed an objective method of evaluating the NNMA
results directly, without having to perform the note detection,
and used it to train the parameters of the proposed method
on a dataset of piano MIDI data. The results obtained for the
proposed regularized and harmonically-constrained NNMA
were better than those of the other modifications of NNMA
we have tested and can be further improved by postprocess-
ing the note activities, e.g. with median filtering.
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