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ABSTRACT

An expression for the mean-square error (MSE) optimal
Wigner cross-spectrum estimator is derived within a wide
class of estimators. Using this expression and a simple model
we are able to construct a new estimator which turns out to be
superior compared to standard estimators such as Thomson
multitapers and Welch method on simulated data.

1. INTRODUCTION

Time-frequency analysis of non-stationary processes has
been approached from different view-points and with differ-
ent assumptions of the non-stationarity, e.g., the evolution-
ary spectrogram, [1], that assumes oscillatory processes and
Wigner spectral estimation of harmonizable processes, [2].
The mean square error optimal kernel for the class of Gaus-
sian harmonizable processes has been obtained by Sayeed
and Jones, [3, 4], and other optimization criteria are mini-
mization of variance, [5, 6] and entropy, [7].

The ordinary cross-spectral density, or cross-spectrum,
between two jointly stationary zero-meaned stochastic pro-
cesses{x(t),t ∈ R} and {y(t),t ∈ R} is defined as the
Fourier transform of the cross-covariance function:Rxy( f ) =∫ ∞
−∞ E [x(t)y(t + τ)∗]e−i2π f τdτ, whereE denotes expectation,

∗ denotes complex conjugate,f shall be thought of as fre-
quency andτ as time-lag. The cross-spectrum tells us at
which frequencies the signals possess a high amount of lin-
early synchronized energy and it also gives information about
phase coupling. The cross-spectrum does not evolve with
time, as the processes are jointly stationary. Since the class
of stationary processes is insufficient to model most phe-
nomenon in nature, there have been attempts to generalize
the cross-spectrum to the class of non-stationary processes.
In this case, the cross-spectrum will be a function of both
time and frequency. It is not trivial to make an appropriate
extension of the definition of cross-spectrum suitable to the
large class of non-stationary processes [8]. In this paper we
will adopt the widely used Wigner cross-spectrum,Wxy(t, f ),
which is defined by:

Wxy(t, f ) =

∫ ∞

−∞
E

[
x
(

t +
τ
2

)
y
(

t −
τ
2

)∗]
e−i2π f τ dτ. (1)

The calculation of the two-dimensional convolution be-
tween the kernel and the Wigner distribution of a process
realization can be simplified using kernel decomposition and
calculating multiple window spectrograms, [9, 10, 4]. The
time-lag estimation kernel is rotated and the corresponding
eigenvectors and eigenvalues are calculated. The estimate
of the Wigner spectrum is given as the weighted sum of the
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spectrograms of the data with the different eigenvectors as
sliding windows and the eigenvalues as weights, [11].

In this paper we address the question of how to estimate
Wxy(t, f ) when a realization of{x(t)} and{y(t)} has been
observed. In Section 2 we derive a formula for the MSE op-
timal estimator within a wide class of estimators. In Section
3 we will use this formula to construct an estimator optimal
for a simple model. This estimator can also be computed us-
ing multiple windows as described in Section 4. In Section
5 we show that the estimator works well compared to other
common estimators, such as Welch and Thomson, when ap-
plied to simulated data. Section 6 concludes the paper.

2. THE MEAN SQUARE ERROR OPTIMAL
SOLUTION

The object of this paper is to estimate the Wigner cross-
spectrum,Wxy(t, f ), defined in (1), using one observed re-
alization of the non-stationary stochastic processe{x(t), t ∈
R} and one realization of{y(t), t ∈ R}. A quite general non-
parametric estimator is given by:

Ŵxy,Φ(t, f ) =

∫ ∫
Φ(t − t1, f − f1)

∫
x
(

t1 +
τ
2

)
y
(

t1−
τ
2

)

×e−i2π f1τ dτdt1d f1,

whereΦ is a smoothing kernel function which has to be ap-
propriate chosen. All common non-parametric Wigner cross-
spectrum estimators (e.g. Short Time Fourier Transform,
Welch-method, all multi-taper methods, etc) can be written
on this form, with different smoothing kernel functions. The
optimal smoothing kernel function to use is unfortunately
problem dependent. We will now derive a relation between
the MSE-optimal kernel functionΦopt and some properties
of the random process. That is, we would like to solve the
following optimization problem:

Φopt = arg min
Φ:R2 7→R2

∫ ∫
E

∣∣∣Wxy(t, f )−Ŵxy;Φ(t, f )
∣∣∣
2

dtd f .

To simplify the above relation, we introduce the following
notations:

Axy(ν,τ) =

∫ ∫
Wxye

i2π( f τ−tν)d f dt

Âxy(ν,τ) =

∫
x
(

t +
τ
2

)
y
(

t −
τ
2

)
e−i2πtνdt

φ(ν,τ) =

∫ ∫
Φ(t, f )ei2π( f τ−tν)d f dt

φopt(ν,τ) =

∫ ∫
Φopt(t, f )ei2π( f τ−tν)d f dt,
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whereφ shall be thought of as the ambiguity kernel corre-
sponding to the smoothing kernelΦ. Using Parsevals for-
mula we see that

∫ ∫
E

∣∣∣Wxy(t, f )−Ŵxy;Φ(t, f )
∣∣∣
2

dtd f

=
∫ ∫

E

∣∣∣Axy(ν,τ)−φ(ν,τ)Âxy(ν,τ)
∣∣∣
2

dνdτ.

And hence

φopt = arg min
φ :R2 7→R2

∫ ∫
E

∣∣∣Axy(ν,τ)−φ(ν,τ)Âxy(ν,τ)
∣∣∣
2

dνdτ.

We see that the solution to this minimisation problem is given
by:

φopt(ν,τ) =

∣∣∣E
[
Âxy(ν,τ)

]∣∣∣
2

∣∣∣E
[
Âxy(ν,τ)

]∣∣∣
2
+V

[
Âxy(ν,τ)

] .

The smoothing kernel is then given as

Φopt(ν,τ) =

∫ ∫
∣∣∣E
[
Âxy(ν,τ)

]∣∣∣
2

∣∣∣E
[
Âxy(ν,τ)

]∣∣∣
2
+V

[
Âxy(ν,τ)

] (2)

×ei2π(νt− f τ)d f dt.

This result is analogous to the optimal kernel solution for
non-stationary spectral estimation [3]. For any given ambi-
guity kernel function the MSE of the Wigner cross-spectrum
can be computed by:

εφ =

∫ ∫
E

[∣∣∣Wxy(t, f )−Ŵxy,Φ(t, f )
∣∣∣
2
]

dtd f

=

∫ ∫ (
|1−φ(ν,τ)|2

∣∣∣E
[
Âxy(ν,τ)

]∣∣∣
2
+

|φ(ν,τ)|2V

[
Âxy(ν,τ)

])
dνdτ.

The expectation, E

[
Âxy(ν,τ)

]
, and the variance,

V

[
Âxy(ν,τ)

]
, can be expressed in terms of the auto covari-

ance functions,rx(s,t) andry(s,t), and the cross-covariance
functionrxy(s,t):

E

[
Âxy(ν,τ)

]
=

∫
rxy

(
t +

τ
2
, t −

τ
2

)
e−i2πtν dt,

andV

[
Âxy(ν,τ)

]
=

−
∣∣∣E
[
Âxy(ν,τ)

]∣∣∣
2
+

∫ ∫
E

[
x
(

t1 +
τ
2

)
x
(

t2 +
τ
2

)∗

y
(

t1−
τ
2

)
y
(

t2−
τ
2

)∗
]

e−i2π(t1−t2)νdt2dt1

=
∫ ∫ (

rx

(
t1 +

τ
2
, t2 +

τ
2

)
ry

(
t1−

τ
2
, t2−

τ
2

)
+

rxy

(
t1 +

τ
2
, t2−

τ
2

)
rxy

(
t2 +

τ
2
, t1−

τ
2

))
e−i2π(t1−t2)νdt2dt1,

{x(t)} {y(t)}

h
′′

t
(u)

∑
h
′

t
(u)

{e(t)}

Figure 1: A time-varying filter model.

where the last equality holds for zero-meaned real-valued
Gaussian processes. In next section we will introduce a quite
general model. Under some simplifications we will be able
to compute the optimal smoothing kernel for Wigner cross-
spectrum estimation for this model.

3. A TIME-VARYING LINEAR FILTER MODEL

3.1 The model

A quite general linear filter model with time varying im-
pulse response functions,h′t(u), and h′′t (u) is described in
Figure 1. In this paper we study the optimal kernel for time-
frequency spectral estimation in a special case of this model.
Let {x(t), t ∈ Z} be a white Gaussian process with variance
σ2

x and let{y(t)} be defined by:

z(t) = az(t −1)+ x(t) , |a| < 1 (3)
y(t) = h(t)z(t)+ g(t)e(t) (4)

where{e(t), t ∈Z} is a white Gaussian process with variance
σ2

e and independent of{x(t)}, h andg are different Hanning
windows. This simple model is well chosen to allow us to
study optimal kernels for a wide range of different processes.
The width of the Hanning envelopesh andg determines the
non-stationarity of the process. The parametera plays the
important role of determining the width of the spectral con-
tent, as shown by Figure 2. The optimal kernel is indifferent
to frequency shifts, which means that the fact that the spec-
tral content in our model reaches its maximum at either 0 or
0.5 does not limit the models generality. This is easily seenin
the Wigner domain, where the kernel is to be 2D convoluted
in the time-frequency plane.

3.2 The optimal kernel

The expectation and variance ofÂxy(ν,τ) for this system is
given by:

E

[
Âxy(ν,τ)

]
=

{
0 τ < 0
aτ σ2

x H(ν)eiπτν τ ≥ 0
(5)

andV

[
Âxy(ν,τ)

]
=






σ4
x

1−a2 ∑t h(t)2 + σ2
e σ2

x ∑t g(t)2 τ < 0

σ2
e σ2

x ∑t g(t)2 + σ4
x H(ν)2 ∗

(
1

1−a2 + a2τ sin(2πτν)
2πν

)
τ ≥ 0

(6)
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Figure 2: The model parametera determines the frequency
width of {z(t)}. Since kernel optimization is indifferent to
frequency shifts, the shape of the frequency content, but not
its location on the frequency axis, will determine the optimal
kernel.
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Figure 3: Example of the optimal kernel for our model.

where∗ denotes convolution andH is the Fourier transform
of h. An example of the optimal kernel is shown in Figure 3.
As expected, signals with narrow spectral content correspond
to an optimal kernel which is narrow along the frequency axis
in Wigner domain. This is illustrated in Figure 4. A similar
relation holds between the widths of the Hanning windowsh
andg and the width of the optimal kernel along the time axis.
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Figure 4: Optimal kernels for different values ona. Here,h
is a Hanning window of length 32.

4. MULTIPLE WINDOWS

Instead of calculating the time-frequency estimate using the
kernel, it is possible to simplify the calculations using a mul-
tiple window spectrogram, [11]. The Cohen’s class is written

Ŵxy(t, f ) =

∫ ∫
Axy(ν,τ)φ(ν,τ)e−i2π(τ f−tν)dτdν

=

∫ ∫
rxy(u,τ)ρ(t −u,τ)e−i2π f τdudτ

=

∫ ∫
x(u +

τ
2
)y∗(u−

τ
2
)ρ(t −u,τ)e−i2π f τdudτ.

Using a change of variablesu = (t1 + t2)/2 andτ = t1 − t2
gives,

W Q
xy(t, f ) =

∫ ∫
x(t1)y

∗(t2)ρ
(

t −
t1 + t2

2
,t1− t2

)

×e−i2π f (t1−t2)dt1dt2

=

∫ ∫
x(t1)y

∗(t2)ρ rot(t − t1,t − t2)

×e−i2π f t1ei2π f t2dt1dt2 (7)

where

ρ rot(t1,t2) = ρ
(

t1 + t2
2

,t1− t2

)
.

The general kernel can be expressed as

ρ rot(t1,t2) =
∞

∑
k=1

λkuk(t1)v
∗
k(t2),

using singular value decomposition resulting in singular val-
uesλk and different complete setsuk andvk. Using the sin-
gular values and singular vectors, Eq. (7) is rewritten as a
weighted sum of spectrograms,

W Q
xy(t, f ) =

∞

∑
k=1

λk

∫ ∫
x(t1)y

∗(t2)e
−i2π f t1ei2π f t2

×uk(t − t1)v
∗
k(t − t2)dt1dt2.

=
∞

∑
k=1

λk

(∫
x(t1)e

−i2π f t1u∗k(t − t1)dt1

)

×

(∫
y(t2)e

−i2π f t2vk(t − t2)dt2

)∗

.

Depending on the differentλk the number of spectrograms
that are averaged could be just a few or an infinite number.
With just a fewλk that differs from zero the multiple window
spectrogram solution is an effective solution from implemen-
tation aspects.

5. A COMPARISON WITH OTHER METHODS

We can use the MSE to compare different estimation meth-
ods. Figure 7 shows the MSE, normalized with respect
to the signal energy, as a function of the model parame-
ter a. We have compared three kernels that are optimal for
a = 0.01,a = 0.5 anda = 0.99 with the Welch method (win-
dow length=32 and number of windows=8), and Thomson
multiple windows (window length=16 and number of win-
dows=8), [12, 13]. Each kernel or set of windows is, for
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Figure 5: The singular vectors corresponding to the kernel
depicted in Figure 3.
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Figure 7: Logarithm of the MSE (normalized with the signal
energy) for different estimating methods as a function of the
model parametera.

eacha, multiplied with the mean square error optimal scalar.
We see that the optimal kernels are not extremely sensitive
to the model parametera. The optimal kernel fora = 0.5
performs better than both Thomson multiple windows and
Welch method in most cases.

6. CONCLUSIONS

We have derived the optimal Cohen class estimator of Wigner
cross-spectrum. For a simple model we have compared the
optimal estimator with Thomson multiple windows and the
Welch method. We found that Thomson multiple windows
and the Welch method works well in some cases, but they
are often far from optimal.
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