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ABSTRACT

The paper describes the processing of non-stationary sig-
nals, which takes the advantages offered by the use of signal-
dependent techniques in sampling and analysis procedures.
The level-crossing approach is exploited for signal sampling,
whereby the local sampling density provides information
about the local maximum spectral frequency of the signal.
The frequency is used to build signal-dependent reconstruc-
tion functions required for signal recovery by solving a least
squares problem. The results of simulation are presented
using speech as an example. The approach developed can
be implemented using asynchronous design techniques and
could be aimed at application in speech transmission over
wireless networks.

1. INTRODUCTION

The spectral contents of signals of practical interest often
change with time. Generally, a signal with time-varying
spectral bandwidth can be approximated with fewer samples
per interval using appropriate non-equidistantly spaced sam-
ples than using uniform sampling procedure, where the sam-
pling rate is chosen taking into account the highest signal
frequency. Intuitively speaking, the non-stationarity of the
signal should be reflected in the process of analog-to digital
conversion – the low frequency regions should be sampled at
a lower rate than the high frequency regions.

A special class of non-uniform sampling is derived if
the sampling process is driven by the signal itself – it is so
called signal dependent sampling. Popular types are based on
zero-crossing, reference signal crossing, level crossing and
send-on-delta concepts. Particular attention should be paid to
cases, where the local sampling density derives from the lo-
cal properties of the signal. One of the sampling approaches
with such a quality is level-crossing sampling, which will be
used further in the paper as a tool for digital data capture
from a continuous time signal.

2. LEVEL-CROSSING SAMPLING

The idea of level-crossing sampling (LCS) is based on the
principle that samples are captured when the input signal
crosses predefined levels. Such a sampling strategy has quite
long history and is exploited for various applications [1, 2].
The quantization levels can be located arbitrarily, however, if
there is no special reason, the typical solution is to dispose
them uniformly along the amplitude range of the signal.

It has been shown that level-crossing sampling has sev-
eral interesting properties and is more efficient than tradi-
tional sampling in many respects [3]. In particular, it can be

related to the processing of non-stationary signals, because
the local density of samples reflects the local characteristics
of the signal [4, 5]. If a waveform is changing rapidly, the
samples are spaced more closely, and conversely – if a signal
is varying slowly, the samples are spaced sparsely. This prop-
erty allows tracking of the local maximum frequency in the
signal spectrum in order to use it for data analysis. Since the
level-crossing sampling scheme provides non-equidistantly
spaced samples, appropriate processing methods must be de-
veloped.

3. RECONSTRUCTION OF SIGNALWITH
TIME-VARYING BANDWIDTH

Several methods for reconstruction of non-uniformly sam-
pled band-limited signals are used. For correct recovery,
they typically require that the maximal length of the gaps
between the sampling instants does not exceed the Nyquist
[6]. If a signal is non-stationary with time-varying spectral
bandwidth, the global satisfying of this requirement is not an
appropriate decision, because that provides redundant data.
The use of level-crossing sampling scheme can reduce the
amount of samples, because the intervals between samples
are determined by signal local properties and by the number
of quantization levels. The quality of processing can be im-
proved if the recovery procedure takes into account the local
bandwidth of the signal [7]. In the following subsections will
be discussed proposed idea and methods for reconstruction
using filters with time-varying bandwidth and for estimation
of local maximum frequency of signal from its level-crossing
samples.

3.1 Signal-dependent reconstruction functions

The sampling theorem states that every bandlimited signal
s(t) can be reconstructed from its equidistantly spaced sam-
ples if the sampling rate equals or exceeds the Nyquist rate
2Fmax, where Fmax is the maximum frequency in the signal
spectrum. The reconstruction in time domain can be ex-
pressed as

ŝ(t) =
N−1

∑
n=0

s(tn)h(t− tn), (1)

where ŝ(t) denotes reconstructed signal, N is the number
of the original signal samples s(tn) and h(t) is an appropri-
ate impulse response of the reconstruction filter, classically,
sinc-function

h1(t) = sinc(2πFmaxt) (2)
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As the sampling instants tn = n
2Fmax

, then the impulse re-
sponse

h1(t− tn) = h1(t,tn) = sinc(2πFmaxt−nπ), (3)

where h1(t − tn) = h(t,tn) is written as the function of two
arguments. The reconstructed signal becomes

ŝ(t) =
N−1

∑
n=0

s(tn)h1(t,tn) (4)

If the signal with time-varying frequency bandwidth fmax(t)
is considered, then the sampling rate of the signal ac-
cording to Nyquist must be at least 2Fmax, where Fmax =
max( fmax(t)). In this case any information about the local
spectral bandwidth is ignored during the sampling process.
To take it into account, it is proposed instead of h1(t,tn) to
use more general function

h2(t,tn) = sinc(Φ(t)−Φ(tn)) = sinc(Φ(t)−nπ), (5)

where Φ(t) = 2π
∫ t
0 fmax(t)dt is the phase of the sinusoid,

whose frequency changes in time as fmax(t), t ≥ 0 and sam-
pling instants tn are chosen such that Φ(tn) = nπ . If the signal
is stationary and band-limited fmax(t) = const = Fmax, equa-
tions (3) and (5) become equivalent. In case of non-constant
fmax(t) waveform of the reconstruction function h2(t,tn) and
the desired sampling instants tn are determined by fmax(t).
Samples are spaced non-equidistantly and themean sampling
frequency can be less than it is required by Nyquist criterion,
which, in this case, should be satisfied rather in local than in
global sense.

3.2 Reconstruction algorithm

To apply the formula (4) for reconstructing the signal from
its level-crossing samples s(tm), the recovery procedure in-
volves signal resampling from sampling set {tm} to {tn}. The
new sampling values ŝ(tn) are found by the method of least
squares to ensure the minimal error

M−1

∑
m=0

(s(tm)− ŝ(tm))2 = min, (6)

where

ŝ(tm) =
N−1

∑
n=0

ŝ(tn)h(tm,tn) (7)

Considering (6) and (7) the solution in matrix notation is ob-
tained

Ŝ = SH(HTH)−1
, (8)

where Ŝ = [ŝ(t0), ŝ(t1), . . . , ŝ(tN−1)], H is M × N matrix
whose element in row m and column n is h(tm,tn) and S =
[s(t0),s(t1), . . . ,s(tM−1)].

In the level-crossing sampling case the values of ŝ(tn)
are limited by two corresponding adjacent quantization lev-
els an ≤ ŝ(tn) ≤ bn, where an ∈ Q, bn ∈ Q and Q is the set
of all quantization levels. This restriction can be written by
substituting

ŝ(tn) = an +(bn−an)kn, (9)

where the coefficient 0 ≤ kn ≤ 1. The equation (9) for all
samples ŝ(tn) can be written as

Ŝ = A+(B−A)◦K, (10)

where A = [a0,a1, . . . ,aN−1], B = [b0,b1, . . . ,bN−1], K =
[k0,k1, . . . ,kN−1] and (◦) denotes Hadamard product of two
matrices. From (8) and (10) it follows

K =
SH(HTH)−1−A

B−A
(11)

The solution (11) may provide coefficient values that lie out-
side the allowed interval limits of [0,1]. To prevent this
the minimization task (6) considering (7) and (9) should be
solved for kn values 0 ≤ kn ≤ 1. As it can be very time-
consuming, the coefficients obtained by (11) are roughly lim-
ited by (12)

kn =






0, if kn < 0

kn, if 0≤ kn ≤ 1

1, if kn > 1

(12)

Further the coefficients are made more precise considering
that the reconstructed signal between two successive level-
crossings is also limited by two corresponding quantization
levels. If we choose the uniform sampling set {tu} with high
enough density and indices u = 0,1,2, . . . ,U − 1, then the
reconstructed signal according to (4) and (9) is

ŝ(tu) =
N−1

∑
n=0

(an+(bn−an)kn)h(tu,tn) (13)

Every recovered sample ŝ(tu) must lie between two corre-
sponding quantization levels cu ≤ ŝ(tu) ≤ du, where cu ∈ Q
and du ∈Q. For all samples this condition can be written as

C≤ (A+(B−A)◦K)GT ≤ D, (14)

where D = [d0,d1, . . . ,dU−1], C = [c0,c1, . . . ,cU−1] and G
is U ×N matrix whose element in row u and column n is
h(tu,tn). The inequality in (14) is applied element-wise. Af-
ter the estimation of K according to (11) and (12) the veri-
fication of condition (14) follows, providing indices u′ that
do not satisfy the requirement. By randomly choosing one
of the indices u′ the index n is found for which the distance
|tu′ − tn| is minimal. Then the coefficient kn is changed as
follows

kn =

{
kn(1−α), if ŝ(tu′) > du

kn(1−α)+ α, if ŝ(tu′) < cu
(15)

where 0 ≤ α ≤ 1 determines how fast the coefficient is de-
creased towards zero or increased towards one (we choose
α = 0.05). Thereafter steps (13), (14) and (15) are repeated
until condition (14) is satisfied for all u or fixed number of
iterations is reached. The fixed number should be set (we
choose 10N) because such technique can not guarantee the
fulfilment of (14). However, the number of indices u′ can be
reduced significantly by random selection of u′ and change
of corresponding coefficient kn at each iteration. Random se-
lection is preferred since the new coefficient influences all
ŝ(tu) values. The number of indices u′ can also be reduced if
instead of one coefficient two coefficients kn and kn+1 corre-
sponding to ŝ(tn) and ŝ(tn+1) with tn and tn+1 located most
closely to tu′ are changed and the condition (14) is made
softer by replacing the values cu and du in matrices C and
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D with cu − (du − cu)β and du + (du − cu)β , where β > 0
(we choose β = 0.05).

For calculation of H and G either impulse response (3)
or (5) can be used. In level-crossing sampling case better
reconstruction result is achieved by h2(t,tn) as it depends
on instantaneous maximum frequency of the signal. The re-
sampling instants tn are determined by fmax(t), that in gen-
eral case is not known in advance. To solve this problem,
an algorithm is developed, which estimates the time-varying
instantaneous maximum frequency using information about
locations of level-crossings. Please note that instantaneous
maximum frequency stands for local bandwidth of the sig-
nal and is not the same as instantaneous frequency defined
through Hilbert transform.

3.3 Estimation of instantaneous maximum frequency

The local bandwidth of the signal can be estimated by find-
ing its time-frequency representation (TFR) using, for ex-
ample, short-time Fourier transform, wavelet transform or
Wigner-Ville distribution. These methods are developed for
uniformly sampled signals, however, there are some modi-
fications in order to find the TFR of non-uniformly sampled
signals [8]. The use of such approach is time consuming, thus
a simpler method should be considered. In [9] it is shown
how to obtain instantaneous frequency of the phase signal
sampled by level-crossings. However, signals of practical in-
terest are not so simple, thus the method based on empirical
evaluations is proposed.

To estimate the function f̂max(t) from samples s(tm),
starting with the initial index value m = 0 two pairs of suc-
cessive level-crossing samples s(tm′

j
) = s(tm′

j+1) and s(tm′′
j
) =

s(tm′′
j+1) are found such that m′′

j > m′
j and the difference

m′′
j −m′

j is minimal. Thereafter the next two pairs are found

considering that m′
j+1 = m′′

j . For each j = 1,2, . . . the value

f (t j) is calculated as

f (t j) =
(
tm′′

j
+ tm′′

j+1− tm′
j
− tm′

j+1

)−1

, (16)

where

t j =
1

4

(
tm′′

j
+ tm′′

j+1− tm′
j
− tm′

j+1

)
(17)

If a single sinusoid is sampled, then f (t j) = f (t j+1) for all
j and it equals the frequency of the sinusoid. If the signal
consists of more harmonics, then f (t j) for different j vary

around the average value of f̄ = 1
J ∑J

j=1 f (t j), where J is the

total number of detected pairs within the observation time of
the signal. Experiments show that f̄ is close to the frequency
of the highest component. Thus, the estimate of function of

instantaneous maximum frequency f̂max(t) can be obtained
by { f (t j)} approximation with piecewise polynomials prv(t)
of order r. By choosing the number L > 1 the observation
interval of signal is divided into subintervals

∆Tv : t ∈ [tv,1;tv,2] , (18)

where v = 0,1, . . . is the number of subinterval and

tv,1 =
t j=vL + t j=vL+1

2
, (19)

tv,2 =
t j=(v+1)L + t j=(v+1)L+1

2

Figure 1: Piecewise polynomial p2k(t) approximation (the
number of samples per subinterval is L = 7).

For each subinterval ∆Tv the coefficients
ev,r,ev,r−1, . . . ,ev,1,ev,0 of polynomial prv(t) = ev,rt

r +

ev,r−1t
r−1 + · · ·+ ev,1t + ev,0 are found to ensure

prv−1(tv,1)
(0) = prv(tv,1)

(0)
, prv(tv,2)

(0) = prv+1(tv,2)
(0)

prv−1(tv,1)
(1) = prv(tv,1)

(1)
, prv(tv,2)

(1) = prv+1(tv,2)
(1)

...

prv−1(tv,1)
(r) = prv(tv,1)

(r)
, prv(tv,2)

(r) = prv+1(tv,2)
(r)

and the value of expression

V−1

∑
v=0

(v+1)L

∑
j=vL+1

[ f (t j)− prv(t j)]
2 = min (20)

is minimal. The denotation (. . .)(r) means the derivative of
order r and V is the total number of subintervals. After solv-
ing the minimization task using the method of least squares,
the coefficients of polynomials prv(t) are obtained and the es-
timate of instantaneous maximum frequency

f̂max(t) = prv(t), if tv,1 ≤ t ≤ tv,2 (21)

depends on the number L of samples f (t j) per subinterval.
To reduce the dependency the final frequency estimate is ob-

tained by averaging f̂max(t) calculated for different L values.
The example of piecewise polynomial of order r = 2 approx-
imation when L = 7 is shown in Fig. 1.

4. APPLICATION TO SPEECH PROCESSING

Speech transmission is one of the most important and com-
mon services in telecommunication networks. One of the ba-
sic prerequisites for successful speech transmission over data
channels is the use of an effective speech encoding technique.
It should compress the speech signal at the sender’s end and
decompress the digital codes to reconstruct the speech with
satisfactory quality at the receiver’s end. The main concern
for system designers is to preserve the best speech quality
and at the same time reduce the necessary bit rate of data

2615



(a)

(b)

Figure 2: Different structures of speech transmission sys-
tems: (a) traditional clock-based; (b) proposed event-driven.

transmission. To achieve such efficiency more and more
sophisticated speech-coding algorithms are used that need
more memory and computational load.

On the other hand, it is attractive if electronic devices,
which perform speech transmission, can be miniaturized
with low power consumption, especially in wireless equip-
ment. A simplified block diagram of the ”classical” speech
transmission approach is illustrated in Fig. 2a. Speech digi-
tizing is based on clock-driven analog-to-digital (A/D) con-
verter, which is followed by a digital signal processing (DSP)
block. As a result, the speech data can be compressed ap-
proximately ten times, which considerably diminishes the
power consumption of the sender (important for wireless sys-
tem) as well as the load on the data transmission channel (im-
portant for VoIP system).

The algorithm described above can be implemented in
an alternative structure of speech processing and transmis-
sion system, which is based on event-driven A/D conversion
and is proposed in [7]. The block diagram of the system is
shown in Fig. 2b. It can be seen that this structure provides
substantial simplification of the sender part of the system.
Application of the method developed to speech processing is
motivated by the properties of speech signals. Within the nat-
urally spoken language, pauses and disfluencies occur quite
often, which do not provide useful information from the point
of view of speech coding. In classical case they are extracted
after the A/D conversion during the speech encoding pro-
cedure, while level-crossing sampling based A/D converter
simply does not capture samples during pauses. In such a
way, it is possible to considerably decrease the data flow on
the ADC output without additional data encoding. A dif-
ferent application of the idea of signal encoding using level
crossings is discussed in [10], where signal is initially pre-
filtered using a filterbank and then each output is sampled by
level-crossings. Also in this case, the speech signal is taken
as an example for illustration of the method.

5. SIMULATION RESULTS

The performance of the signal-dependent algorithm was
tested on a speech signal taken from the TIMIT database
(/timit/train/dr1/mtpf0 /sx335.wav; sampling frequency 16
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Figure 3: Fragment of the test speech sentence (samples as
black points) (a), and its STFT (black line shows the esti-
mated time-varying maximum frequency) (b).

kHz). The signal had been low-pass filtered with a cut-off
frequency of 4 kHz, and interpolated by sinc functions to
obtain level-crossing samples. Using 10 quantization levels
3301 samples were obtained during 3.8 seconds of the test
phrase (mean sampling rate is about 870 samples per sec-
ond). Uniform sampling at rate of 8 kHz provides 30400
samples. The waveform and the samples captured by LCS
are illustrated in Fig. 3a. The time-frequency representation
of the signal obtained by STFT is shown in Fig. 3b. The black
bold line represents the instantaneous maximum frequency

f̂max(t) of the signal estimated according to (21). From the
figure follows that the bandwidth of reconstruction filter will
vary in the spectral range up to 4 kHz.

After the estimation of f̂max(t) the calculation of kn ac-
cording to (11) follows. Only 20% of the coefficients ob-
tained lie inside the allowed interval limits of [0,1], while the
rest 80% are limited by (12). To verify the condition (14) the
uniform sampling set {tu} of 64 kHz is chosen. In total, 30%
of reconstructed samples ŝ(tu) calculated by (13) do not sat-

isfy (14) and reconstruction error

√
1
U ∑U−1

u=0 (s(tu)− ŝ(tu))2

is 22 mV. However, after 10N repetitions of steps (13), (14)
and (15) the number is reduced to 8% and the error becomes
15 mV. The fragment of reconstructed speech is shown in
Fig. 4a as a solid line, while the dashed line represents the
original signal. The error signals |s(tu)− ŝ(tu)| before and
after iterative adjustment of coefficients are shown in Fig. 4b
as gray and black solid lines. It can be noticed that the am-
plitude of the error signal is decreased and does not exceed
the value of 40 mV, which is the distance between two quan-
tization levels. The average simulation time used by an or-
dinary personal computer (CPU frequency 2.66 GHz) for re-
constructing the signal is 10 times larger than the length of
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Figure 4: Reconstructed speech signal as black solid line (a),
and reconstruction error signals before (gray solid line) and
after (black solid line) iterative update of coefficients.

the signal and most of the time (up to 80%) is taken up by
iterative adjustment of coefficients.

The reconstruction result improves as the number of
quantization levels increases providing more level-crossing
samples. If there are 20 quantization levels, then during 3.8
seconds of the test phrase 8509 level-crossing samples are

obtained. When f̂max(t) is estimated the calculation of kn fol-
lows. Now 70% of the coefficients obtained by (11) are lim-
ited according to (12). In total, 31% of reconstructed samples
ŝ(tu) do not satisfy the condition (14) and the reconstruction
error is 10 mV. After 10N repetitions of steps (13), (14) and
(15) the number is reduced to 9% and the error becomes 6.9
mV.

6. CONCLUSIONS

The proposed approach for non-stationary signal processing
uses signal dependent techniques: level crossing sampling
for data acquisition and applying of time-varying bandwidth
filter for signal reconstruction. The information carried by
level-crossing samples is employed in two ways – time in-
stants of samples are used to estimate the instantaneous max-
imum frequency of the signal, while the amplitude values
of samples are used in reconstruction algorithm. The recon-
struction procedure is based on solving a least squares prob-
lem to find the new samples of the signal at time instants,
which are determined by evaluated instantaneous maximum
frequency. The adjustment of new sampling values follows
by verifying if the reconstructed signal lies between corre-
sponding quantization levels.

Speech signal processing is demonstrated as one of the
application areas. Simulation results show advantages of pro-
posed method, which are related to the exclusion of pauses

and disfluencies from processing before A/D conversion as
well as to the possibility of decrease in sampling density. In
case of 10 quantization levels audio perception remains good,
while the number of samples is reduced 9 times in compari-
son with standard uniform processing.
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