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ABSTRACT

We present a probabilistic model for learning non-negative
tensor factorizations (NTF), in which the tensor factors are
latent variables associated with each data dimension. The
non-negativity constraint for the latent factors is handled by
choosing priors with support on the non-negative numbers.
Two Bayesian inference procedures based on Markov chain
Monte Carlo sampling are described: Gibbs sampling and
Hamiltonian Markov chain Monte Carlo. We evaluate the
model on two food science data sets, and show that the prob-
abilistic NTF model leads to better predictions and avoids
overfitting compared to existing NTF approaches.

1. INTRODUCTION

Matrix factorization methods such as principal component
analysis, singular value decomposition, factor analysis, inde-
pendent component analysis, and non-negative matrix fac-
torization (NMF) [1, 2] have become established tools in
many data analysis tasks such as dimensionality reduction,
missing data imputation, and data visualisation. These tech-
niques restricts their analysis to that of two-dimensional ma-
trix data, but frequently data occurs in the form of multi-
way arrays or tensors. When data have a natural multiway
structure it is sensible to conserve this structure in the anal-
ysis of the data, as opposed to rearranging the data into
a matrix and employing conventional matrix decomposition
techniques.

Non-negative tensor factorization (NTF), which general-
izes NMF, is an emerging technique for computing a non-
negative low-rank approximation to multiway data array.
Non-negativity is a natural constraint in many application
areas; for example, when data are measurements of color in-
tensities, counts, or spectral amplitudes, negative numbers
do not have any physical interpretation. Furthermore, it
has been shown for NMF that the non-negativity constraint
often leads to sparse solutions and lends an intuitive parts
based interpretation to the data.

In this light, we focus on non-negative factorizations of
tensor data. The perhaps most well known model for tensor
factorization is the PARAFAC model [3, 4], in which data
tensor X is represented in polyadic form, i.e., as the sum
of a finite number of rank one tensors. For a general I-
dimensional tensor, X ∈ R

M1×···×MI this decomposition can
be written as

X ≈ X̂ =

K
X
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I
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where K is a positive integer, uk
i are vectors in R

Mi , and ⊗
denotes the outer product. In the general PARAFAC model
the factors have no constraints, and the model has the desri-
able property that it is unique under mild conditions.

Variations of the PARAFAC model can be obtained by
placing different constraints on the model factors and by

considering different algorithms for parameter learning. Two
such methods are the positive tensor factorization (PTF)
[5] and non-negative tensor factorization (NTF) [6]. These
algorithms are based on minimizing the reconstruction error,
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where ‖ · ‖2
F is the squared Frobenius norm, which is the

sum of squares of all entries of the tensor elements. Welling
and Weber [5] present a non-probabilistic approach where
the factor matrices are learned using a fixed point algorithm
similar to the multiplicative update rules for NMF proposed
by Lee and Seung [2]. Shahsua and Hazan [6] present two al-
gorithms: a direct approach using a gradient descent scheme
and an expectation maximization (EM) approach using re-
peated rank-1 approximations.

We approach the non-negative tensor factorization prob-
lem by considering the PARAFAC model as a latent factor
model. We describe a fully specified graphical model for the
problem and employ Bayesian learning methods to infer the
latent factors. This is important since the Bayesian approach
has significant advantages in that it makes efficient use of the
available data, allows prior information to be included into
the model, avoids overfitting, allows a principled approach
to model comparison and allows missing data to be handled
easily. Explicit non-negativity constraints are not required
on the latent factors, since this is naturally taken care of by
the appropriate choice of prior distribution. We approach
learning in this probabilistic NTF model through the use
of Markov chain Monte Carlo (MCMC) techniques. Specif-
ically, both Gibbs sampling and Hamiltonian Markov chain
Monte Carlo (HMC) is discussed.

The structure of the paper is as follows: Section 2 pro-
vides additional notation and presents NTF as a probabilis-
tic latent factor model, and section 3 discusses the details of
Gibbs sampling and HMC for inference in the model. Section
4 presents experimental results on two food science datasets,
and we conclude in section 5.

2. NON-NEGATIVE TENSOR
FACTORIZATION

In non-negative tensor factorization (NTF), the observed
data is an I-way array, X ∈ R

M1×···×MI , where the di-
mensions of each mode are denoted by M1, . . . , MI . Let
M = {1, . . . , M1} × · · · × {1, . . . , MI} be the index set over
all elements in X and let m = (m1, . . . , mI) be an I-tuple
index in M. We denote the total number of elements in X
by M =

Q

i Mi.
We seek to find a decomposition of the form given by

Eq. (1) that approximates X as the sum of K rank-1 tensors
that are outer products of I non-negative vectors, uk

i ∈ R
Mi .
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Figure 1: Graphical model of Bayesian NTF. Dark and
white circles denote observed and unobserved variables re-
spectively, and plates represent repeated variables. The hy-
perparameters are shared by all plates, but for clarity are
shown connected only to the ith plate.

Each element of X̂ can thus be computed by

x̂m =
K
X

k=1

I
Y

i=1

u
k
imi

, (3)

where uk
im denotes the mth element of uk

i . We view the
vectors uk

i as latent factors, and proceed by specifying a
hierarchical Bayesian model.

2.1 Hierarchical Bayesian model

We view the data X as being produced according to the
probabilistic generative process described in Figure 1. The
observed data points, xm , are modelled using a Gaussian
likelihood with variance ϑ and mean x̂m given by the de-
composition in Eq. (3),

p(xm |{uk
im}, ϑ)=N (xm|x̂m , ϑ)=

1√
2πϑ
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«

.

(4)
We choose a conjugate prior on the data variance, namely an
inverse Gamma distribution with shape and scale parameters
α and β,

p(ϑ|α,β) = IG (ϑ|α, β) =
βα

Γ(α)
ϑ
−α−1 exp

„−β

ϑ

«

. (5)

We assume that the latent variables uk
im are drawn from a

rectified Gaussian prior with unknown mean µk
im and vari-
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where h(x) is the Heaviside unit step function. This prior
serves to enforce the non-negativity constraint, and is con-
jugate to the Gaussian likelihood.

(a) (b) (c)
-2 µ 2-2 µ 2-2 µ 2

0

v
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Figure 2: Illustration of different priors for µ and v where
µµ=0 and vµ=a=b=1. a) Independent Normal and inverse
Gamma, N (µ|µµ, vµ)IG(v|a, b). b) Normal-inverse-Gamma,
N (µ|µµ, vµv)IG(v|a, b). c) Proposed prior in Eq. (8).

If the prior over uk
im had been a Gaussian, appropriate

conjugate priors for the mean µk
im, and variance vk

im, would
be a Gaussian and inverse Gamma; however, these priors
are not conjugate to the rectified Gaussian, and instead we
choose a convenient joint prior density,

p(µk
im, v

k
im|µµ, vµ, a, b) =
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”

, (7)

where c is a normalization constant. With this prior, µk
im and

vk
im decouple, and the posterior conditional densities of µk

im

and vk
im are Gaussian and inverse Gamma respectively. This

non-standard density is illustrated in Figure 2 and compared
with two commonly used priors over mean and variance pa-
rameters.

We denote the set of all unknown variables in the model
by θ =

˘

{uk
i }, ϑ, {µk

i }, {vk
i }
¯

, and the set of hyperpareme-
ters by Ψ = {α, β, a, b, µµ, vµ}. Following from the graphical
model and Eq. (5–8) the joint probability of data and param-
eters is given by

p(X , θ) = p(X |{uk
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(8)

3. MARKOV CHAIN MONTE CARLO
INFERENCE

3.1 Gibbs sampling

Gibbs sampling is one of the simplest MCMC techniques
and plays a prominent role in modern Bayesian inference.
The Gibbs sampler is widely applicable, particularly in the
case where we deal with conditional distributions that have
a parametric form that can easily be sampled from [7]. With
our choice of conjugate priors and hyper priors, Gibbs sam-
pling is particularly applicable for inference in the proba-
bilistic NTF model.

In Gibbs sampling we assume that the latent variables
in the model, θ, are partitioned in N groups, θ1, . . . , θN ,
and that it is possible to draw samples from the posterior
conditional densities, p(θn|θ\θn), for each of these groups.
Given some initial value of the parameters, we proceed by
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iteratively sampling each group of latent variables, θn, while
keeping all other variables fixed. This procedure forms a
homogeneous Markov chain that can be shown to sample
from the full posterior distribution. Gibbs sampling explores
the posterior distribution in a random walk manner, and this
may result in slow mixing of the Markov chain. Thus, in
practice samples are highly correlated and a large number
of iterations and subsampling is required in order to obtain
independent samples from the target distribution.

To apply the Gibbs sampling procedure to probabilistic
NTF we derive the relevant posterior conditional distribu-
tions, based on the joint distribution in Eq. (9). Our choice
of conjugate priors simplifies this process, and implies the
functional form of the posterior conditional distributions for
all unknown variables. For each conditional posterior dis-
tribution we denote the posterior parameters by the same
symbols as the prior parameters with a bar.

The conditional distribution for uk′

i′m′ is a rectified Gaus-

sian, p(uk′

i′m′ |X , θ\uk′

i′m′) = R(uk′

i′m′ |µ̄k′
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(10)

from which it is possible to draw samples using standard
methods such as inverse transform sampling. The mean of
the density is unconstrained but samples are non-negative
due to the rectification in the distribution. The condi-
tional posterior distribution of the data variance is an inverse
Gamma distribution, p(ϑ|X, θ\ϑ) = IG(ϑ|ᾱ, β̄), with shape
and scale

ᾱ = α + M
2

β̄ = β + 1
2
χ

2
, (11)

where χ2 = ‖X − X̂‖2
F is the sum of squared errors.

The conditional posterior distribution for µk′

i′m′ is Gaussian,
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and the conditional posterior distribution for vk′

i′m′ is an

inverse Gamma, p(vk′

i′m′ |X , θ\vk′

i′m′) = IG(vk′

i′m′ |ā, b̄), with
shape and scale parameters

ā = a + 1
2

b̄ = b + 1
2
(uk′

i′m′ − µ
k′

i′m′)2. (13)

The latent variables in the probabilistic NTF model can thus
be learned by sequentially drawing samples from these con-
ditional densities.

3.2 Hamiltonian Markov chain Monte Carlo

A second MCMC sampling method is Hamiltonian Markov
chain Monte Carlo (HMC) [8, 7], which is a suitable sampler
for use with this model since all the variables are continuous
and it is possible to compute the derivative of the log joint
probability. HMC is also an attractive scheme for sampling

since it avoids the random walk behaviour of the Metropolis
or the Gibbs sampling algorithms [7].

HMC is an auxiliary variable sampler that uses gradient
information to improve mixing. The gradient acts as a force
that causes the sampler to explore the sample space more
effectively. The gradient acts on the momentum q, of the
system which is included as the auxiliary variable, such that
we sample from the augmented distribution p(θ, q|X) rather
than the target distribution p(θ|X). The sampling requires
that we are able to compute a potential and kinetic energy
as well as the gradient of the potential energy with respect to
the sampling variables. The potential energy function is the
negative log joint probability of the probabilistic NTF model,
E(θ|Ψ) = − ln p(X , θ|Ψ), given by the negative logarithm
of Eq. (9). The auxiliary momentum variable q is Gaus-

sian and is used to define the kinetic energy K(q) = 1
2
q⊤q,

and the gradients ∆θ ,
∂E(θ)

∂θ
can be derived from Eq. (9).

The sum of the kinetic and the potential energy defines the
Hamiltonian H. Samples of θ and q are obtained by com-
bining the Hamiltonian with the gradient information in the
simulation of so-called “leapfrog” steps which simulate the
Hamiltonian dynamics. We defer these details and the gen-
eral pseudocode for HMC to the works of MacKay [9] and
Neal [7].

3.2.1 Change of variables

To simplify the HMC sampling procedure, we ensure that
the simulation dynamics for the model parameters are per-
formed in an unconstrained space. For probabilistic NTF,
the parameters uk

im ≥ 0, ϑ ≥ 0 and vk
im ≥ 0 can be trans-

formed to unconstrined variables using the transformations:
uk

im = exp(ũk
im), ϑ = exp(ϑ̃), and vk

im = exp(ṽk
im). These

changes of variables requires the joint probability in Eq. (9)
to be multiplied by the Jacobian determinants of the trans-
formations, which are given by
˛
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Including the Jacobian terms and computing the nega-
tive of the logarithm of Eq. (9), we arrive at the following
negative log joint probability density
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k
im

)

.

(15)

3.2.2 Derivatives

Using Eq. (16) we can compute the required derivatives ∆θ
for HMC sampling. The derivative of the negative log joint

probability density w.r.t. the variable ũk′

i′m′ is given by
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Recalling that χ2 is the sum of squared errors, defined previ-
ously for Eq. (12), the derivative w.r.t the likelihood variance
is given by

∂L
∂ϑ̃

= −
1
2
χ2 + β

ϑ
+

M

2
+ α. (17)

The remaining derivatives are those w.r.t the unknown mean
and variance of the latent variables given by

∂L
∂µk′

i′m′

= − uk′
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∂ṽk′

i′m′

= −
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2
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i′m′)2 + b

vk′

i′m′

+ a. (19)

3.3 Notes on computation

The major part of the computational complexity in the
Gibbs sampler and the HMC lies in computing Eq. (10–11)
and Eq. (17) respectively, which are the only expressions
that require a sum over all data points. In the following, we
only discuss the efficient computation of Eq. (17) for HMC,
but note that the computations for the Gibbs sampler are
similar.

The two central terms in the computation are inner prod-
ucts between the model factors and the data tensor as well
as the approximated data tensor. The first term can be com-
puted efficiently by forming the outer product of uk

im for all
i except i′, and computing a tensor product
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where ⊙ denotes the elementwise product. This can be im-
plemented using efficient standard routines for matrix mul-
tiplication and has complexity O(MKI) to compute for the
whole model. The second term can be computed efficiently
as
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where U i = [u1

i , . . . , u
K
i ], and it has a computational com-

plexity of O(
P

i MiK
2) to compute for the whole model.

Note that this formulation avoids the explicit computation
of the approximation to the data tensor, and thus allows the
algorithms to scale to large data tensors without excessive
memory requirements.

4. EXPERIMENTS

We evaluate the performance of the proposed probabilistic
NTF methods on two publicly aviailable food science data
sets: The first data set is five-way tensor of measurements
of the color of fresh beef [10] as it changes due to stor-
age conditions. The second data set is a three-way tensor
of sensory profiles of bread [11]. Detailed descriptions of
the data sets are available at http://www.models.kvl.dk/
research/data. We compare the reconstructive ability of
the probabilistic NTF techniques to that of the non-negative
PARAFAC model, which we compute using the algorithm of
Bro et al. [12] implemented in the N-Way Toolbox [13].

For each dataset, we separate the available data into
training and test data. The test data is created by randomly
selecting 10% of the data points and setting them as missing

Table 1: Root mean squared error and standard deviation
results on color of beef and sensory bread data for PARAFAC
and probabilistic NTF using different model orders.

Data K PARAFAC Probabilistic NTF

C
o
lo

r
o
f
b
ee

f 1 2.90 ± 0.43 2.90 ± 0.43
2 1.66 ± 0.57 1.50 ± 0.23
3 1.52 ± 0.38 1.53 ± 0.31
4 2.54 ± 2.92 1.53 ± 0.36
5 2.16 ± 1.13 1.47 ± 0.45
6 1.99 ± 1.30 1.47 ± 0.33
7 2.21 ± 0.63 1.54 ± 0.37

S
en

so
ry

b
re

a
d

1 1.50 ± 0.11 1.50 ± 0.11
2 1.32 ± 0.10 1.30 ± 0.09
3 1.23 ± 0.09 1.22 ± 0.09
4 1.26 ± 0.07 1.22 ± 0.08
5 1.21 ± 0.08 1.19 ± 0.09
6 1.23 ± 0.08 1.17 ± 0.09
7 1.26 ± 0.11 1.17 ± 0.09
8 1.34 ± 0.30 1.16 ± 0.09

data in the training set. We repeat this process to create 10
such datasets. We do inference in the presence of missing
data for a range of different model orders, and compute root
mean squared error (RMSE) on the held out data.

Missing data is easily handled in the inference procedure
for the Bayesian NTF model by excluding the missing ele-
ments in the likelihood term, which corresponds to dealing
with the “missing at random” data assumption. For the
non-negative PARAFAC model, missing data is handled by
coupling the learning with built-in EM iterations [14].

HMC has two free parameters, the step size δ, and the
number of leapfrog steps τ . The selection of these parame-
ters is a design choice. A large step sizes causes the sampler
to make large steps in the sample space and may result in
oscillatory sampling behaviour. Small step sizes cause the
sampler to take very small steps and may result in slow con-
vergence, requiring a large number of iterations. In general
we choose the step-size to ensure that the reject rate is less
than 25%. It is also preferable to have a large number of
leapfrog steps since this reduces the random walk behaviour
of the sampling [7]. In our experiments we used τ = 20
leapfrog steps of size δ = 0.001.

We computed 50, 000 samples and discarded the first half
to allow for the samplers to burn in. Results using the Gibbs
sampler and the HMC were similar; thus, for compactness
we only show results obtained using the Gibbs sampler. We
found that HMC exhibited faster convergence in terms of
iterations but slower in terms of computation time, since
each iteration of the HMC is approximately τ times slower
than a Gibbs sweep.

Results for the two data sets are given in Table 1 and Fig-
ure 3. In the color of beef data, the non-negative PARAFAC
model predicts missing data well for model orders K = 2
and K = 3 in accordance with previous results on this data
set [10]. For larger model orders, however, the PARAFAC
model overfits, evidenced by a decreasing training error and
increasing test error. The probabilistic NTF model predicts
missing data equally well or better at all model orders, and
does not overfit. In the sensory bread data, the results for
the non-negative PARAFAC model suggest that the data
is reasonably modelled using around 3–7 components. The
probabilistic NTF model predicts missing data better than
non-negative PARAFAC for all model orders and does not
lead to overfitting. Figure 4 shows autocorrelation coeffi-
cients of samples computed using Gibbs sampling and HMC
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Figure 3: Root mean squared error (RMSE) on color of beef
and sensory bread data for PARAFAC and probabilistic NTF
using different model orders. Solid and dotted lines indicate
held-out test data and training data respectively.

on the sensory bread data, indicating that the HMC sampler
mixes slightly better than the Gibbs sampler. The figure also
shows the root mean squared error on the training data as a
function of the iteration number, which indicates that both
algorithms quickly converge to sample from a high density
region of the posterior.

5. CONCLUSIONS

We have presented a model for probabilistic non-negative
matrix factorization. The model is formulated by consider-
ing each of the tensor factors as a latent variable in a proba-
bilistic graphical model. We have described two MCMC in-
ference procedures: Gibbs sampling and Hamiltonian Monte
Carlo. Both inference methods provide the same level of
performance and have been shown to provide consistent pre-
dictions even as the number of tensor factors is increased.
Probabilistic NTF is able to avoid problems of overfitting
which is common in the standard non-negative PARAFAC
model and other maximum likelihood learning approaches.

Future work includes a more rigorous comparison of the
two sampling methods to evaluate which may be better for
practical applications of this model. Other work includes
exploring methods for the automatic discovery of the number
of tensor factors through other MCMC techniques such as
reversible jump MCMC or by non-parametric modelling.
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squared error on the training set as a function of number of
iterations for a five-component probabilistic NTF model.
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