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ABSTRACT

A typical concept-detection problem is characterised f@aty dis-
proportionate sizes of the populations of training samjethe

concept and anti-concept classes. In many cases, the fopula

of anti-concept (negative) examples outnumber the coreegoin-

ples. In this paper, an inverse random under sampling mehod

proposed to solve this imbalance problem. By the proposetiode
of inverse under sampling of the anti-concept class we castoact
a large number of concept detectors which in the fusion dtagi-
tate a fine control of both false negative rates and falsdipesates.
In this method the main emphasis in learning the discrirtifizm-
tions is on the concept class, leading to an almost perfpetragon
of the two classes for each detector. The proposed methgyl@o
applied to commonly-used video and image collection berachs
Mediamill and Scene datasets. The results indicate signifiper-
formance gains. For some concepts, the improvement in rage
precision is by several orders of magnitude, and the mearagee

precision is 12% and 17% better for Mediamill and Scene étsas

respectively when compared with conventionally trainegidtc re-
gression classifier.

1. INTRODUCTION

The image/video database retrieval problem involves fgdirthe
database, instances of multimedia content that is sinuildre con-
tent of interest, specified by the user. The required corgentbe
specified by example, or it can be defined abstractly in tefrosro
cepts. In the former case we refer to the retrieval problecoagent
based retrievaland in the latter case @®ncept-detectianin this
paper we shall focus on the latter variant where it is assutiad
for each concept we have a set of representative examplagé€si
A machine learning algorithm is then used to construct a ofle
the concept class that can successfully discriminate @biseenples
from negative (anti-concept) instances.

situation where each image/video can take multiple clalselda
i.e., the multi-label problem. However, the underlying lpbilistic
model is still discriminative. More examples of using distina-
tive machine learning techniques for image/video clas#ifio can
be foundin [5, 7, 9, 13].

A typical concept-detection problem is characterised aty
disproportionate sizes of the populations of training sasm the
concept and anti-concept classes. For the negative classaty
easy to compile a large training set, which is invariablestibuted
by fusing the training samples of all the other concept eags
form the negative class. With this approach, the relatizessof the
concept class and negative sample class training sets ffantgi
several orders of magnitude. This huge disparity in theningi set
cardinalities poses a challenging machine learning probléen
designing the concept detectors.

The problem of disproportionate class size is not uniquento
agel/video retrieval. In has been encountered in other cadjoins
in pattern recognition and statistics. A number of difféream-
pling strategies have been suggested to deal with it. Theilgbses
explored in the literature include stratified sampling [Zjeve the

same number of training samples is drawn for each class. és th

negative class in stratified sampling becomes under samtled
approach opens the possibility of drawing a large numbeiftrel
ent anti-concept training sets and designing multiplesifiéss that
can then be fused to improve the detection performance.
Classifier designs based on disproportionate trainingsz¢s
manifest themselves in exhibit conditional classificatorors that
are dependent on the population size probabilities. We ahglie
that in order to achieve good retrieval performance, as oredsn

terms ofaverage precisionit is essential to provide the designer

with a very fine control over both false positive rate (ineatty
detecting negative samples as belonging to the conces) dasl
false negative rate.

Mathematically, the concept-detection problem can be @erm In this paper, a novel inverse random under sampling (IRUS)
lated as either one class or conventional two-class patémogni- ~ method is proposed for the class imbalance problem in wiieh t
tion problem. In the former case we build a generative model oratio of the respective training set cardinalities is ineg. The idea

the concept class and the concept-detection then invobstmg
the hypothesis that an unknown image is consistent with theefn
i.e. could have been generated by it. The alternative isew ¥he
concept retrieval as a two-class problem where the secass $
represented by negative samples, i.e. images that do niaticahe

is to severely under sample the negative class (majorigsglahus
creating a large number of distinct negative training sEts. each
training set we then find a linear discriminant which sepegahe
positive class from the negative samples. As the number sifipe

samples in each training set is greater than the number aftiveg

specified concept. The problem can be solved using generativ samples, the focus in machine learning is on the positivescad
discriminative models learnt using the training data. consequently it can invariably be successfully separatech the

In many practical situations the number of examples reprenegative training samples. Thus each training set yieldsabas-
senting the concept class is very limited. This precludeklimg  sifier design. By combining the multiple designs, we corcita
a reliable generative model and, in consequence, the agprea COmMposite between the positive class and the negative. claes
which rely on such models are inappropriate. Thus most of théhall argue that this boundary has the capacity to delirtbatpos-
image/video database methods in the literature adopt theckass ~ itive class more effectively than the solutions obtained:bgven-
formulation and, as the rest of this paper, resort to disictive tional learning.
machine learning solutions. For example, in [3], Supporttye The proposed methodology is applied to an image database and
Machines (SVMs) are used in a hierarchical manner for image a a video database involving 6 and 39 concepts respectivetyus
notation and retrieval. In [15], the goal is to detect thespreee  standard benchmarking sets, namely the Mediamill Chadletdeo
of 101 semantic concepts in videos. The detection of each cordatabase [15] and Scene database [17, 3], for which the ctate
cept is formulated as a binary classification problem. Is tlis-  the art performances are well documented in the literatndsfea-
criminative setting, again SVMs are employed. [8] considire  tures are pre-computed and available on line. We validaeath
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vocated approach and demonstrate that it yields signifiserior-

classes artificially by eliminating some of them. The lagielution

mance gains. In the case of some concepts the improvemd in tis not very sensible, as we would be depleting the class wisich

average precision is by several orders of magnitude, andhtren

average precision is 12% and 17% better for Mediamill anch8ce

datasets respectively.
The paper is organised as follows. Section 2 provides briefly
view several class imbalance methods followed by propasestse

random under sampling method (IRUS) in section 3. Sectioe-4 d

scribes the experimental setup followed by results andudision in
Section 5. The paper is drawn to conclusion in Section 6.

2. RELATED WORK

The most commonly used methods to handle imbalanced data sgj

involve under sampling or over sampling of the original ds¢#s.

naturally underrepresented even further. The former sniwould
lead to a substantial increase in the false negative rate.

The problem of learning decision functions in situationslu-
ing highly imbalanced class sizes is sometimes mitigatestiafi-
fied sampling. This aims to create a training set containicgrapa-
rable numbers of samples from all the classes. Clearlyraiied
sampling the training set size would be determined by thetraurof
samples in the underrepresented class. This would leadrastic
subsampling of the anti-concept class with the resultahtgton in
the accuracy of the estimated class boundary. This lossoofracy
can be recovered by means of multiple classifier methodolBgy
rawing randomly multiple subsets from the anti-conceassldata
set, each adhering to the stratified sampling criteria, wedssign

Random over sampling and random under sampling are the mogkyera| detectors and fuse their opinions. For a typicabiarice of

popular non-heuristic methods that balance class repiatsam
through random replication of the minority class and randgim-
ination of majority class examples respectively. There some

priors of say 100 : 1, the number of the designs would be too low

to allow an alternative approach to controlling false gesierror
rate and one would have to resort to the biasing methods sliedu

limitations of both random under sampling and random ovet-sa
pling. For instance, under-sampling can discard potentigdeful
data while over-sampling can increase the likelihood ofrfitimg
[1]. Despite these limitations, random over sampling inggahis
among the most popular sampling techniques and providepe&Bm
itive results when compared with most complex methods [1, 11

Several heuristic methods are proposed to overcome the
limitations including Tomek links, Condensed Nearest Kbimur
Rule (CNN), One-sided selection and Neighbourhood Clegmile
(NCL) are several well-known methods for under-sampling][1
while Synthetic Minority Over-Sampling Technique (SMOTE)

a well-known method for over-sampling technique [6]. Thema
'tﬂg""“f'gafu'\feo lgaésegorgtigfr?g:nsﬁ? éh..edt;ae );?32555[6? grp;}iroa:g?ng nlumbe_r of independent sets t_hat can be drawn will be of the_ranﬂ
ity class is oversampled by interpolating between seveimbrity ~ pz- This large number of designs could then be used for comgpll
class examples that lie together. Depending upon the anafunt the false positive rate using a completely different meeranThis
over-sampling required, neighbours from thaeearest neighbours contrasts with the complex task of biasing a decision bognie
are randomly chosen. Thus, the overfitting problem is awbited ~ high dimensional space.

the decision boundaries for the minority class are spredbduinto
the majority class space [1].

Liu et al [11] and Chan et al [4] examine the class imbal-
ance problem by combining classifiers built from multipledan
sampled training sets. In both approaches, several sufisets
the majority class with each subset having approximatedystime
number of samples as the minority class are created. Orsif@as
is trained from each of these subsets and the minority classeen
the classifiers are combined. Both these approaches diffgoup-
ing multiple classifiers and in creating subsets from theonitgj
class.

earlier.

Suppose we take the data set manipulation to the extreme and
inverse the imbalance between the two-classes. Effegtiwel
would have to draw sample sets from the anti-concept clasizef
proportional toP? whereP is the prior probability of the concept
class. This would lead to very small sample sets for the @omizept
Hass and therefore, a poor definition of the boundary betviee
two-classes. Nevertheless, the boundary would favour dheept
class. Also, as the number of samples from the negative ©ass
very small in relation to the dimensionality of the featupmase,
the capacity of each boundary to separate the classes $ultiigh.
Moreover, as the number of samples drawn is proportiongfthe

Anti-Concept Class. I
X Concept Class >
/N

3. PROPOSED INVERSE RANDOM UNDER SAMPLING
METHOD (IRUS)

In this section, we will discuss the proposed inverse randaner
sampling (IRUS) method. For convenience, we refer to theonitin
class as the concept class and the majority class as thecaa@pt
class. A conventional training of a concept detector usirdata
set containing representative proportions of samples ftwrcon-  method. As the number of samples forming the negative ckass i
cept and anti-concept classes will tend to find a solutioh hth very small, each detector design will be significantly digfiet. This

be biased towards the larger class. In other words, the piieba will produce highly diverse detectors which are requireddffec-

Figure 1: Schematic diagram showing each boundary partitibe
training data set by a hyperplane tangent to the surfaceeofah
ume occupied by the concept class.

Interestingly, there is another important benefit of thelRidS

ity of misclassifying samples from the anti-concept clask e

lower than the probability of error for the concept class.wduer,
the actual performance will be determined by the underlyingr-
lap of the two-classes and the class prior probabilitiesusTwe
need to control the probability of misclassification of séesdrom
the anti-concept class to achieve the target performaneetles.
This may require setting the operating point of the detestoas to
achieve false positive rate that is lower than what wouldib&lgd
by conventional training. This could be achieved by biadimg
decision boundary in favour of the anti-concept samplereates
using threshold (off set) manipulation. Alternatively, weuld in-

tive classifier fusion. The fused decision rule achievesebetass
separation than a single boundary, albeit estimated usorg sam-
ples. This is conveyed schematically in Figure 1. Each baond
partitions the training data set by a hyperplane tangeneaostir-
face of the volume occupied by the concept class. It is theruni
of these tangent hyperplanes created by fusion, which itotest a
complex boundary to the concept class. Such boundary cald n
easily be found by a single linear discriminant functionotte re-
sorted to nonlinear functions, the small sample set trgimvould
most likely lead to a over fitting and, consequently, to poen-g
eralisation on the test set. Figure 2 provides supportiridesce

crease the imbalance between the number of samples fromvthe t for the above conjecture. The histogram of discriminantcfiom
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values (i.e. distance from the decision boundary) gengfayeone 4. EXPERIMENT DESIGN
thousand classifiers designed using the inverse imbalamplisg

principle for a single negative class test sample (blue bhows 4.1 Datasets
many of the classifiers scoring positive values which liel@don-  The effectiveness of the proposed classifier is tested oriavteld

cept class side of the boundary. This is expected for morehaif  challenge [15] and Scene [3] benchmarks. The mediamillehgé

of the classifiers, as the negative sample will lie beyoncttheeept by Snoek et al [15] provides an annotated video datasetdbmse
class, but nevertheless on the same side as the concept fass the training set of NIST TRECVID 2005 benchmark [14]. This
contrast, discriminant function values for a single pesitilass test  dataset consists of 86 hours of video, divided into a trgjrset
sample show that most of the classifiers scoring positiveeglie  (70% of the data or 30993 examples) and test set (30% the data o
on the concept side of the boundary. 12914 examples). On this dataset, the 39 LSCOM:-Lite caiegjor
are used [12, 16]. The feature vector used in these expetsmen-
sists of 120 visual features and available on-fr{&xperiment1 in
[ e mediamill challenge by Snoek et al [15]). In scene dataset]R 6
categories are used. This dataset is divided into 121 litigasam-

ples and 1196 test samples. The feature vector consistsAdea9
tures and available on-lie Table 1 and 2 show the ground truths

in both Mediamill and Scene datasets. Detail descriptiamuabow
these feature are computed can be found in [3, 15].

250|
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5
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&

4.2 Benchmark Methods

Logistic Regression (LR) is used as the base classifier fopth-
posed inverse random under sampling technique (IRUS). Rb&I
method is compared with the baseline performance basedeon th
SVM classifier withRBF kernel [15] and Hybrid Ensemble Boost-
ing Learning method (HMLB) reported in [17]. In addition, Wwave
compared IRUS with sampling technigues Random Under Sam-
pling (RUS), Random Over Sampling (ROS) and SMOTE. For all
sampling techniques, LR is used as a base classifier. We Isve a
compared IRUS with ensemble techniques Bagging and AdaBoos
with decision tree (C4.5) as base classifier. The WEKA [1§]len

o . . ,.mentation is used for LR, SMOTE, Bagging and AdaBoost.
In summary, we propose a classifier design approach which is

based on an inverse imbalance sampling strategy. This @acc
plished by combining the outputs of the multiple concepediirs
in the fusion stage and thus allows a very accurate definitfidthe  Average precision is standard image ranking measure argtin
boundary between the concept class and the anti-concegst cla  this paper. The average precision is a single-valued medkat is

The pseudo code of IRUS is shown in Algorithm3andSets  proportional to the area under a precision-recall curvas Value is
are user specified parameterS.controls the number of negative the average of the precision over all relevant judged sHdts met-
samples drawn at random in each model with values rangimg fro  ric combines precision and recall into one performanceealthis
to N. — 1. Setsdetermine the number of models or classifiers with measure is computed from the ranking list of all the key frarme
values greater thaN;/S. For each seE} paired with=¢c we learn  the database established by ordering their similaritiesdpecified
a modelh;. For each modeh;, the probability of unseen instances concept. Average Precision for each concéyR)(is defined as

100|

-10 0 10 20 30 40
Discriminant Function Values

Figure 2: Histogram of Discriminant Function generated Img o
thousand classifiers.

4.3 Evaluation Measure

belonging to concept clag3 is calculated. The probabilities from 1 R
all models are added. The output is a probability=ebf the test AP= = ¥ ¢ 1)
instances belonging to concept class, is then used to calculate IR =1

the performance measure discussed in Section 4.3.
whereR is the complete set of the positive samples in a test set and

Algorithm 1 PseudoCode for Inverse Random Under Samplingthe contributioncy of the k" element in the ranking list is defined
(IRUS) as [ROM| if

=1 concepttrue @
Require: =c: Training set of concept patterns with cardinalMy 0 if conceptnottrue
=a: Training set of anti-concept patterns with cardinahty
=t: Test set with cardinalitiN whereMy = {i1,i2,....,ik} is aranked list of the tok retrieved sam-
S Number of samples frorz, for each Model ples from the test set.
Sets Number of classifiers
Ensure: =: Probability set of Test instances belonging to concept 5. RESULTSAND DISCUSSION
class 0 5.1 Experimentl: Video Benchmark
ﬂ)'; T:: 1 toSetsdo Table 1 shows the average precision (AP) for each concepgusi
=/ « Randomly pickSsamples without replacement frafg ~ Various methods for the mediamill challenge. From the tesitlis
Te<Zh+3c observed that IRUS methpd has highest performance_ in 15f_G|9t o]
Train base classifiét usingTs samples concepts. For concepts like animal, court, natural-desagblice-
for j =1toN; do security, prisoner, screen, snow, and waterbody, imprevenof
D. < Probability distribution of Test Samp j belonging ~ OVer 50% is achieved over LR and SVM. However for some con-
to concept class frory cepts, especially flag-usa and sky, there is decrease iorpehce.
=pj < =pj+De This is explained by the fact that for these concepts, sontie an
end for concept samples are ranked very high; i.e. these samplayslie
end for

Lhttp:/www.science.uva.nl/research/mediamill/chadje/
2http://mlkd.csd.auth.gr/multilabel.html
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Concept Ground Truth LR SVM [15] | HMLB [17] RUS | ROS | SMOTE | Bagg | AdaBoost IRUS
Train (\N;) | Test RBF S=Ng2
Court 63 39 0.069 0.093 0.000 0.004 | 0.026 | 0.048 | 0.047 0.061 0.189
Prisoner 103 28 0.005 0.047 0.000 0.003 | 0.006 | 0.005 | 0.007 0.048 0.137
Snow 126 68 0.054 0.085 0.108 0.011| 0.024 | 0.042 | 0.152 0.131 0.170
Bus 132 83 0.011 0.013 0.000 0.008 | 0.010 | 0.011 | 0.009 0.013 0.011
Explosion 164 134 | 0.081 0.098 0.076 0.025 | 0.056 | 0.079 | 0.077 0.049 0.083
Charts 234 66 0.290 0.327 0.171 0.017 | 0.106 | 0.224 | 0.347 0.300 0.282
Boat 242 70 | 0.043 0.096 0.121 0.044| 0.031| 0.041 | 0.112 0.183 0.138
Desert 250 186 | 0.106 0.103 0.174 0.065| 0.094 | 0.113 | 0.110 0.080 0.142
Natural Disaster 250 120 | 0.048 0.055 0.065 0.027 | 0.042 | 0.046 | 0.059 0.057 0.113
Flag USA 285 121 | 0.183 0.227 0.171 0.043| 0.145| 0.212 | 0.130 0.085 0.087
Police/Security 286 100 | 0.018 0.012 0.000 0.013| 0.017 | 0.017 | 0.054 0.029 0.100
Aircraft 306 122 | 0.080 0.073 0.187 0.046 | 0.066 | 0.082 | 0.086 0.074 0.138
Weather Report 307 161 | 0.342 0.405 0.307 0.114| 0.178 | 0.319 | 0.263 0.261 0.429
Animal 309 117 | 0.148 0.209 0.141 0.028 | 0.062 | 0.119 | 0.310 0.395 0.436
Maps 358 156 | 0.378 0.476 0.389 0.110 | 0.256 | 0.377 | 0.386 0.356 0.504
Truck 361 132 | 0.039 0.038 0.040 0.033 | 0.036 | 0.036 | 0.031 0.022 0.043
Screen 475 245 | 0.095 0.101 0.061 0.055 | 0.073 | 0.087 | 0.107 0.095 0.185
Office 485 226 | 0.076 0.077 0.282 0.056 | 0.065| 0.079 | 0.077 0.064 0.108
Mountain 508 131 | 0.190 0.141 0.134 0.121| 0.169 | 0.181 | 0.215 0.176 0.252
People Marching 597 533 | 0.261 0.228 0.332 0.208 | 0.245| 0.297 | 0.178 0.165 0.205
Water Body 716 244 | 0.173 0.150 0.146 0.121| 0.150 | 0.188 | 0.257 0.272 0.333
Corporate-Leader 797 168 | 0.018 0.016 0.000 0.016 | 0.018 | 0.019 0.016 0.015 0.019
Sports 1166 337 | 0.211 0.304 0.115 0.119| 0.139 | 0.147 | 0.181 0.184 0.199
Vegetation 1198 599 | 0.215 0.183 0.191 0.193| 0.192| 0.197 | 0.161 0.131 0.179
Military 1283 850 | 0.242 0.217 0.250 0.226 | 0.236 | 0.241 | 0.182 0.152 0.239
Meeting 1405 627 | 0.245 0.257 0.272 0.223| 0.233 | 0.234 | 0.198 0.163 0.233
Car 1509 766 | 0.232 0.252 0.253 0.188 | 0.208 | 0.222 | 0.250 0.233 0.241
Building 2126 1441 | 0.303 0.316 0.335 0.257 | 0.286 | 0.293 | 0.278 0.232 0.297
Road 2404 852 | 0.190 0.195 0.212 0.177| 0.183 | 0.185 | 0.196 0.184 0.198
Government Leader 2899 1016 | 0.235 0.213 0.202 0.211| 0.224| 0.224 | 0.167 0.152 0.217
Sky 3339 1469 | 0.535 0.478 0.373 0.513| 0.520 | 0.511 | 0.446 0.394 0.451
Crowd 3559 2082 | 0.519 0.480 0.397 0.505| 0.513 | 0.517 | 0.454 0.414 0.454
Urban 3651 1136 | 0.217 0.222 0.197 0.204 | 0.211 | 0.205 | 0.242 0.215 0.223
Walking/Running 4219 2174 | 0.370 0.353 0.311 0.359 | 0.363 | 0.367 | 0.330 0.286 0.334
Studio 4234 1834 | 0.640 0.636 0.463 0.606 | 0.612 | 0.614 | 0.660 0.628 0.666
Entertainment 6088 1621 | 0.281 0.166 0.194 0.273| 0.277 | 0.262 | 0.323 0.293 0.293
Outdoor 10130 4950 | 0.739 0.688 0.688 0.735| 0.736 | 0.732 | 0.736 0.703 0.710
Face 19883 8055 | 0.897 0.895 0.712 0.898 | 0.897 | 0.895 | 0.881 0.876 0.895
People 24071 9798 | 0.941 0.831 0.830 0942 | 0.941| 0.941 | 0.930 0.918 0.937
MAP (N; < 1000) 0.123 0.140 0.132 0.053 | 0.085| 0.119 | 0.138 0.133 0.187
MAP (N; > 1000) 0.412 0.393 0.353 0.390 | 0.398 | 0.399 | 0.389 0.362 0.398
Overall MAP 0.249 0.250 0.228 0.200 | 0.222 | 0.241 | 0.247 0.233 0.279

Table 1: Comparison of Average Precision with different inoels for Mediamill data setS= Number of negative samples used for each
classifier in IRUS (See Algorithm 1). The second and thircuools show the Ground Truths witlk, is the number of samples in the
concept class.

Concept Ground Truth {c) LR SVM | HMLB [17] RUS | ROS | SMOTE | Bagg | AdaBoost IRUS
Train Test RBF S=Ng?
Mountain 196 235 0.829 | 0.896 0.526 0.812 | 0.807 | 0.839 | 0.884 0.866 0.888
Field 197 200 0.681 | 0.873 0.533 0.707 | 0.646 | 0.673 | 0.876 0.899 0.877
Fall Foliage | 199 165 0.922 | 0.960 0.651 0.930 | 0.924 | 0.927 | 0.920 0.948 0.880
Urban 207 204 0.501 | 0.689 0.371 0.446 | 0.476 | 0.478 | 0.674 0.668 0.765
Beach 227 200 0.702 | 0.772 0.374 0.663 | 0.680 | 0.707 | 0.759 0.727 0.817
Sunset 277 256 0.488 | 0.562 0.349 0.437| 0.491| 0.509 | 0.566 0.586 0.610
MAP 0.687 | 0.792 0.467 0.666 | 0.671| 0.689 | 0.780 0.782 0.806

Table 2: Comparison of Average Precision with differentnogls for Scene data set.

577



on the positive side of the boundary. Overall, IRUS yieldm#i-

cant performance gains. In the case of some concepts thevepr

ment in the average precision is by several orders of maggjtand

sampling method.
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time parametersjand SetsSee Algorithm 1) are not shown due 1]

to lack of space. For mediamill challengg= N¢-3 is used for all

(20]

concepts while for scens= N2 is used. The other run time pa-

rameter,Setswhich determine the number of classifiers is equal to[13]

1.5 x Na/S for both data sets. In this paper, fusion is performed

through that the sum of scores obtained from individualsifas's.
It is part of our future research to investigate other waysarhbi-
nation such as Fuzzy Integral, Dempster-Shafer etc to ineptioe
performance.

6. CONCLUSION

A novel inverse random under sampling (IRUS) method is psego

in this paper to solve the imbalance problem in conceptetiete

(14]

(15]

By the proposed method we can construct a large number of

concept detectors which in the fusion stage facilitate admrol
of both precision and recall.
learning the discriminant functions for the concept cldsading
to almost perfect separation of the two-classes for eachctist

The main idea is to emphasise
[16]

The distinctiveness of IRUS is assessed experimentallpgusi

image and video benchmarks.

average precision is by several orders of magnitude, andhtren

The results indicate significan
performance gains. For some concepts, the improvementein th17)

average precision is 12% and 17% better for Mediamill anch8ce

datasets respectively when compared to conventionallyetia

logistic regression classifiers.
is used as a base classifier.

In this paper, logistigression

other well-known classifiers like NaiveBayes, SVM, KNN, LDA

It would be interesting to see ho

We)

behave when used as a base classifier in our proposed invetse u
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