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ABSTRACT

Studies on Mixtures of Student (t-)distributions have demon-
strated their ability to conduct clustering tasks with valuable
robustness to outliers, compared to their Gaussian mixture
counterparts. Concurrently, distributed clustering has moti-
vated much interest in methods for building a partition by
consensus of multiple partitions. This paper addresses the
latter need by aggregating mixtures of Student distributions.
It involves minimizing iteratively an approximate KL di-
vergence between mixtures, which themselves approximate
each Student component as a finite Gaussian mixture.

1. INTRODUCTION

Probabilistic mixture models form a mainstream approach to
unsupervised clustering, with a wealth of variants, pertain-
ing to the form of the model, optimality criteria and estima-
tion schemes. While Gaussian mixtures are, by far, the most
popular, they are known to lack statistical robustness, i.e. es-
timation of parameters is severely affected by only a mod-
est proportion of outliers. Improvement may be obtained by
specifying a clustering-oriented optimality criterion, which
encourages well-separated classes, rather than density mod-
elling (max. likelihood like). Another direction for improve-
ment resides in the form of the mixture components. In par-
ticular, mixture of t-distributions (i.e. Student distributions)
have demonstrated their effectiveness to face this robustness
issue, thanks to their heavier tail that can model a larger
amount of outliers, compared to Gaussian densities. In fact,
as we shall detail, a Student density may be viewed as a in-
finite linear combination of Gaussians with constant mean
and various variances. Smaller variances model the “mean-
ingful” data, while large-variance components account for
outliers, if needed. The degree of freedom controls how the
amount of outliers to be accepted in the model. The price to
pay is more intricate (often, lack of close form) and possi-
bly unstable estimation schemes, especially when the degree
of freedom is unknown. This robustness has attracted much
interesting into adapting existing important Gaussian-based
procedures to their Student-based counterparts [1, 7].

Aggregation of class models is a classical topic, both
supervised (ensemble methods, boosting) and unsupervised.
Yet, growing interest comes from the transposition of exist-
ing statistical learning and recognition tasks onto distributed
computing systems (cluster, P2P, sensor networks). The un-
supervised case is our focus here, i.e. search for a consensus
from an ensemble of data partitions. This issue has been ad-
dressed e.g. by probabilistic approaches in the case of Gaus-
sian mixtures [3, 5] and voting techniques [2].

A combined model could simply be obtained by a
weighted sum of mixtures, yet this would generally result
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in an unnecessarily high number of components, with a view
to capturing the underlying probability density. The scope of
the paper is a new scheme for estimating, from such a pos-
sibly over-complex Student mixture, a mixture that is more
parsimonious, i.e. where each class is represented by a sin-
gle component. Parsimony is particularly important if such
mixture combinations follow one after another.

Section 2 presents a baseline algorithm, which was pro-
posed to carry out mixture reduction in the case of Gaussian
mixtures. Briefly stated, it operates like a k-means technique
on mixture components, trying to minimize Kullback-Leibler
divergence between the linear combination of incoming mix-
tures and the reduced mixtures. For the robustness reasons
discussed above, it is better suited to density estimation than
clustering. Thus, efficient consensus techniques in an en-
semble of model-based remains an important and open issue.
Section 2 identifies the difficulties in generalizing the base-
line mixture reduction algorithm to Student mixtures. There
are two main difficulties, that reside in the two steps of the
iterative algorithm. Section 3 recalls the expression of a Stu-
dent density as a Gaussian mixture, and hence of a Student
mixtures as a constraint mixture of mixtures. We then put
forward solutions of the two abovementionned difficulties.
Section 4 provides experimental results and Section 5 sup-
plies concluding remarks.

2. BASELINE MIXTURE REDUCTION
ALGORITHM

Let the problem be formulated as transforming a mixture
model f into another g with less components, while mini-
mizing the KL divergence involved by the simplification pro-
cess. This section recalls how this was solved in [5], as we
shall progress from this baseline. A key feature of their so-
lution is that only model parameters are accessed to group
components, i.e. neither access to data nor sampling are re-
quired. Thus, it is very cost effective in terms of compu-
tation. The central mechanism in the component grouping
technique consists in approximating the KL-divergence be-
tween two mixtures f and g as follows :

K M
d(f,g) = Zmr}l_illlKL(ﬁHg/) (1
i=1 -

where K and M are respectively the number of components
of f and g, 7; is the mixing proportion of component i.

The search for optimal g is composed in two alternat-
ing steps. The first one associates components of f to the
current components of g (binary assignments), minimizing
eq.(1). In other words, it amounts to determining the best
mapping m from {1...K} to {1...M} such that criterion (1)
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Figure 1: Reduction of a mixture model following [5] :
dotted and solid ellipses represent respectively the g and f
models. (a) shows the first step where the divergence be-
tween components of g and f are computed (see arrows). (b)
presents the parameter update of g based on the mapping m,
minimizing criterion (1).

1s minimized :
d(f,g) = argmin  d(f,g,m)

LS @)
= argmin Y wKL(fillgm(i)
i=1

The above approximation is practically interesting because
there exists the following closed-form approximation of the
divergence between Gaussians :
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where 7 is the dimension of the feature space.

The second step updates the model parameters of g, again
from the sole model parameters of f. These two steps are it-
erated until the convergence of the criterion defined in equa-
tion 1. Figure 1 depicts the clustering algorithm.

Adapting this framework to reduction of a Student mix-
ture raises two problems :

e in step 1 : to our knowledge, there does not exist any
closed-form solution for the KL divergence between two
Student components (at least when the covariance matri-
ces are not proportional). We thus propose (section 3.2)
an approximation of the KL divergence, based on a de-
composition of a Student component with a finite sum of
Gaussian components;

e in step 2 : we should design a low-cost and statistically
optimal scheme for determining a Student component
that represents the set of grouped Student components.

Figure 2: Student density for several values of the degrees of
freedom. As v — oo, the distribution corresponds to a Gaus-
sian. For a low degree of freedom, the heavy tails enables
more robustness to outliers.

The algorithm 1 summarizes the different steps of our ap-
proach.

Algorithm 1 Clustering algorithm for Student components

Require: two Student mixtures f and g, respectively of K
and M components (K > M). Initial values for means [,
are draw randomly and initial covariances for X, are set
tol/p(1<p<P).
1.Approximate each Student component of f and g with P
Gaussian components
while d(f,g) is not minimized do
2.1.compute the Kullback-Leibler divergence approxi-
mation between the components of f and g.
2.2.update the model parameters of g based on the map-
ping functions m and n?’.

end while

Return mixture g, which is the reduction of mixture f

3. REDUCING AN OVERCOMPLEX
STUDENT MIXTURE

3.1 Approximation of the Student distribution

A Student distribution S may be expressed as an infinite sum
of Gaussian distributions (a Gaussian scale mixture) with
identical mean :

S(r 1, V) = /0 TN, Z )G, v 2, v [ 2)du, (@)

where A4 (x, 1,2 /u) is a Gaussian component with mean u
and covariance X, v is the degrees of freedom and G is the
Gamma distribution. Figure 2 presents the curve of a Student
distribution as the function of the degrees of freedom. Ex-
pression (4) shows that a Student density is an infinite mix-
ture of Gaussians, where weights and covariance are deter-
mined by one another.

We propose to approximate each Student component by
the following finite mixture of P Gaussians, where uy,...,up
are draw from G(u,v/2,v/2):

lP
S(X)ZEZ

X
N (1, —) o
p=1 Up
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The term P depends on v, since the higher is v, the lower
P needed for a correct approximation. Each Student com-
ponent is then approximated with a number of components
varying in accordance with its degree of freedom v.

Figure 3 presents an example on our approximation of a
Student component with 10 Gaussian components.
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Figure 3: (a) presents the Gamma distribution of the term
u for v = 10. Ten values of u are sampled from this distri-
bution. (b) shows the selected Gaussian components (gray
lines) and the obtained approximation (black line). (c) com-
pares the approximation (black line) and the real Student
density (gray line).

3.2 Kullback-Leibler divergence between
two Student approximations

Our Gaussian representation of a Student component is
motivated by the opportunity to use an approximation of
the Kullback-Leibler divergence between Gaussian mixtures.
Although the latter problem has no closed-form expression,
it has been given much interest in recent years. Many ap-
proaches were compared in [6]. Monte Carlo sampling ob-
viously leads to best accuracy, but at the price of a high cal-
culation complexity. Thus, we rather use it as a benchmark
and focus on methods aiming the best trade-off between ac-
curacy in KL approximation and computational cost (i.e. re-
quiring only models parameters). Experiments from [6] con-
clude that the best approaches are the matched bound and
the variational approximations. Because of its lower cost, we
resort to the matched bound criterion [4].

This approximation of the Kullback-Leibler divergence
between two models f and g is very similar to the previous
criterion 2, also based on a mapping function 7’ minimizing
the sum of Kullback-Leibler divergences:

T
KLmatchBound(ng) = Zﬂi <KL(f’||g’”/(’)) +log7c ,()> :
(6)

where 7; is the prior probability of a component i.

Approximation of a Kullback-Leibler divergence be-
tween two Student components amounts then to comput-
ing the Kullback-Leibler divergence between two Gaus-
sian models, both composed of P components and identical
means. Figure 4 illustrates our method for computing an ap-
proximate Kullback-Leibler divergence between two Student
components.

Once the Kullback-Leibler divergence obtained for each
approximate Student between f and g, each component of g
is assigned to its closest components of f. Parameters of g
are then updated in accordance with the mappings m and m'.

3.3 Update of the model parameters

We discussed above how to approximate the KL divergence
between mixtures. Since g is unknown, a major point is
whether we can associate, to this approximation, a procedure
to optimize it. A parameter update scheme was proposed in
[5] between Gaussian mixtures. We extend it to cope with
Student mixtures. In an iterative fashion, it successively as-
signs components to groups and updates group representative
components. This may be viewed as a k-means like tech-
nique operating on mixture components.

Because we approximate each Student component as
a finite, constrained Gaussian mixture, the above iterative
scheme includes a new inner step to update the parameters
of its Gaussian components. Each Gaussian is updated as
follows:

1

Mg = ﬁjziemﬂj) Ty Uy,
Lgjp = % Liem1(j)
(m Yiem1 (p) (Eﬁ'l + (lufi - lugj)(uﬂ - nugj)T)>(8)

where g, = Yc,-1(;) Ty, and X is the p™ covariance of

the component j of g.
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Figure 4: Example of the Kullback-Leibler divergence be-
tween two approximate Student components. Solid and dot-
ted lines represent respectively the models f and g. On figure
(1) the original Student components of f and g. On figure (2),
our proposed approximation of the Student component with
P = 3 Gaussian components. Optimization of the matched
bound criterion amounts to map the components of f and
g such that the sum of the Kullback-Leibler divergences is
minimized. Here, the arrows show the obtained mapping n'.
Note that the mapping is not necessarily surjective.

For a component of g, its single center is the average of
the associated centers of f. Each one of its P covariances is
the average of the associate covariances of f, based on the
mapping m’. For example, the mean and the covariance X,
of the component g; on Figure 4 are respectively updated
with the mean of f| and f> and the covariance Xr,,, X7, and
z

fia:
Note that since m’ is not surjective, a component (1;,%,)
can be associated to no component of f. In this case, the

covariance remains unchanged.

4. EXPERIMENTS

To validate our proposal, we first compute a KL divergence
between a Student and our approximation for different num-
ber of Gaussian components. Then we propose an example
of a Student model reduction with our adapted algorithm.

4.1 Approximation of a Student Component

For our first experiment, we sample 5000 data in accordance
with a Student distribution and compute the KL divergence
based on the Monte Carlo method. For P varying from 1 to
75, we carried out the following steps, 20 times each:

e select the P Gaussian components: randomize P values
of term u in accordance with the Gamma distribution;

e compute the KL divergence.

The average KL divergence for the 20 iterations are plotted
on Figure 5, for various values of v.

This experiment confirms that as v increases, the num-
ber of components to obtain a low KL divergence decreases.
Indeed, for v > 2, the associated curves tend quickly to 0

— degree of freedom=0.3
degree of freedom=0.8
--—- degree of freedom=2
-o-- degree of freedom=4
-+- degree of freedom=8
-v- degree of freedom=15

KL divergence

Number of Gaussian components

Figure 5: KL divergence between our approximation and the
Student distribution according to the number of components
and the degrees of freedom V. As V increases, the number of
components needed to obtain a low KL divergence decreases.
This is explained by the fact that the distribution tends to a
Gaussian when v — oo.

giving a good approximation for P varying between 8 and
20 components. For a smaller value of v, we notice that the
divergence converges from 40 Gaussian components.

The chaotic result obtained for the first values on the
curves is due to the low number of components used to ap-
proximate the Student density. Indeed, the terms u are sam-
pled and each one has a significant weight in these first iter-
ations.

4.2 Reduction of a Student model

We apply here our algorithm to reduce a Student mixture f
into a mixture g. Parameters of f are initially set as follows:

e the mean and the covariance matrix of the initial Student
mixture are set manually. To cope with singular covari-
ance, the SVD method is applied on the covariance ma-
trix to factorize them in three matrices (UXV™*);

e the degree of freedom are drawn uniformly between 0
and 30. Each Student component of f is approximated
in accordance with our previous result: if v; < 3 then
P, =50c¢lse P, = 10;

Parameters of g are initially set as follows:

e the means are set randomly among the initial means of f;

e the number of Gaussian components P is set with the
highest value used to approximate the components of f;

e cach covariance of an approximate component are set
randomly from the covariance matrices of f.

In our experiment, the model f is composed of 16 Stu-
dents components (see figure 6 (a)). We present here a re-
duction solution with a model g composed of 7 components.

The obtained reduction is illustrated in figure 6(a). Over-
lapped components are well reduced with one component
of g (components situated at (—25,—22), (—18,20) and
(20, —15)), and a similar result is obtained for isolated com-
ponents (components situated at (—5,—22), (—7,—10) and
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Figure 6: (a) presents the model f and the obtained reduced model g. Single ellipses are the component of f and multiple
ellipses are the component of g. The initial data of each component of f are plotted. (b) shows the evolution of KL divergence
between f and g during the iterative optimization process. We display both the finite sum approximation, which is more
tractable and hence used for optimization, and a Monte-Carlo approximation, which is closer to the true KL.

(—18,0)). We notice an exception with the isolated compo-
nents (5,5) and (20,20), associated to a single component of
g. This result, due to the chosen number of components to
reduce f (7 components), is nevertheless acceptable consid-
ering the proximity of their data sets.

Figure 6 (b) presents the optimization of the Monte Carlo
and KL divergences. The optimization is quickly achieved:
the first iteration leads to a stable mean for each component
and the remaining iterations are due to update of the covari-
ances of each component. The variations on the last itera-
tions are then negligible.

In our opinion, the obtained model g proposes a pertinent
reduction of the initial model f. Distinct components are
kept and overlapped components are regrouped.

5. CONCLUSION

Student mixtures are powerful tools for robust clustering.
This paper proposes a technique for addressing consensus
between Student-based partitions, with low-cost, parameter-
level. It exploits the view of a Student distribution as an in-
finite, Gamma-weighted, Gaussian mixture and relies on the
iterative optimization of a tractable approximation of a well-
founded criterion, KL divergence.

Several improvements are under way. Currently, mix-
tures to be aggregated are first summed, then the sum is re-
duced. The reduction process does not yet take into account
from which mixture each component originates. Further, a
Bayesian treatment will enable a more efficient determina-
tion of the suitable number of clusters. The finite sum ap-
proximation should make it derivation quite straightforward
from [3].
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