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ABSTRACT
This paper present a simple watermarking approach based on
the rotation of low frequency components of image blocks.
The rotation process is performed with less distortion by pro-
jection of the samples on specific lines according to message
bit. To have optimal detection Maximum Likelihood crite-
ria has been used. Thus, by computing the distribution of
rotated noisy samples the optimum decoder is presented and
its performance is analytically investigated. The privilege of
this proposed algorithm is its inherent robustness against gain
attack as well as its simplicity. Experimental results confirm
the validity of the analytical derivations and also high robust-
ness against common attacks.

1. INTRODUCTION

Digital watermarking is a process in which some informa-
tion is embedded within a digital media so that the inserted
data becomes part of the media. Several watermarking tech-
niques have been proposed so far [1]. Among the proposed
algorithms, Quantization Index Modulation (QIM) [2] has at-
tained great popularity due to its lossless performance when
lattice-based codebooks are used.

The main drawback of QIM algorithm is its vulnerability
against gain attack which can easily occur through a simple
channel without degrading the quality of the watermarked
signal. Three types of solutions have been proposed to tackle
this problem: i) Adopting auxiliary pilots through the water-
marked signal known at both the encoder and decoder [3] ii)
using spherical codewords [4] with correlator decoding [5],
or using Angle QIM (AQIM) [6], [7], , and iii) introducing a
domain in which the embedding process is invariant to gain
attack called Rational Dither Modulation (RDM) [8].

The first solution decreases the security of the algorithm,
since the malicious attacker can change either the watermark
or the pilot signals. Besides, pilots are deterministic objects
in the main signal and can be easily detected. Although the
second and third approach keeps the security of the QIM al-
gorithm, it causes high computational cost which increases
the complexity of the algorithm. Besides, the low robust-
ness of the AQIM against AWGN attack and also high Peak
to Average Power Ratio (PAPR) of the RDM are the main
drawbacks that should be addressed.

In this paper, we perform our embedding procedure on
the slope of two points in which contains four samples. By
this work the effect of noise decreases and better robustness
is achieved in comparison with AQIM. Since the slope of
two points varied, the PAPR does not change significantly.
In order to have less distortion instead of rotating the line the

projection on two specific lines determining the value of em-
bedded bits is performed. Using analytic geometry, we em-
bed the watermark bit by multiplication of specific matrices
to the input vector. For the sake of simplicity, throughout the
paper, the projection is done just on two lines. Consequently,
for optimal detection, a simple hypothesis test has been used.
It is straight forward but rather complicated to apply the pro-
jection on several lines and apply M-hypothesis test for de-
tection purpose to increase the capacity . The performance of
the proposed algorithm is analytically investigated and eval-
uated via simulations.

2. SYSTEM MODELING

In this section, we introduce the model we consider for our
watermarking algorithm. We assume that we have an i.i.d
Gaussian distributed random signal with four samples as the
host signal. We show it as u = [u1,u2,u3,u4] which has the
Gaussian distribution of N(0,σ2

u ). We model these 4 sample
as two points p = [u1,u2] and q = [u3,u4] in the 2-D space.
The slope of the line which connects these two points is as
follows:

c =
u4−u2

u3−u1
(1)

If we depict the numerator and the denominator of the above
equation with a and b, we have a,b ∼ N(0,2σ2

u ). For the
case that a and b are independent, c which is the ratio of zero
mean independent normally distributed variates is Cauchian

as fC(c) = 1
π

σa
σb

c2+( σa
σb

)2 . Where, σa and σb are respectively the

standard deviation of a and b.
Thus, we have two correlated Gaussian variables (with

the correlation coefficient r) and their joint distribution is
given as:

fab(a,b) =
1

2πσaσb
√

1− r2
e
− 1

2(1−r2)
( a2

σ2a
− 2rab

σaσb
+ b2

σ2
b

)
(2)

Thus, the cumulative distribution function of c is given as:

FC(c) = P
{a

b
≤ c

}

= P
{

a≤ bc,b > 0
}

+P
{

a≥ bc,b < 0
}

=
∫ ∞

b=0

∫ bc

a=−∞
fab(a,b)dadb

+
∫ 0

b=−∞

∫ ∞

a=bc
fab(a,b)dadb (3)
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Figure 1: Steps of the proposed watermark embedding
method.

Therefore, the probability density function will be:

fC(c) = F ′C(c) =
∫ ∞

−∞
|b| fab(bc,b)db (4)

Substituting (2) in (4) and considering the fact that fab(a,b)
is an even function with respect to a and b we have:

fC(c) =
1

2πσaσb
√

1− r2

∫ ∞

0
be
− b2

2σ2
0 =

σ2
0

πσaσb
√

1− r2
(5)

where

σ2
0 =

1− r2

( c
σa

)2− 2rc
σaσb

+ 1
σ2

b

As a consequence,

fC(c) =
1
π

σaσb
√

1− r2

σ2
b (c− rσa

σb
)2 +σ2

a (1− r2)
(6)

In addition, FC(c) can be computed as:

FC(c) =
1
2

+
1
π

tan−1 σbc− rσa

σa
√

1− r2
(7)

3. PROPOSED METHOD

In this section we introduce our blind watermarking algo-
rithms.

3.1 Watermark embedding
To embed the watermark code in the image, we segment the
host image into non-overlapping blocks and embed a single
bit in each block based on the strategy given bellow.

In each block, we select four approximate level coeffi-
cients We apply 2-D Discrete Wavelet Transform (DWT) to
each image block. Then we select four coefficient out of the
approximate level coefficients. To provide security, the in-
dices of these subsets are produced by a random generator
which is the same for all blocks and is sent to the decoder
side through a secure channel.

Let’s show these coefficients as u = [u1,u2,u3,u4]. As
discussed in Section 2, we model these four sample as two

points p = [u1,u2] and q = [u3,u4] in the 2-D space. Fig. 1
shows these two points as well as the line connects them to-
gether. Let’s show the slope of this line with θ . The center of
this (p,q) line is in [ u1+u3

2 , u2+u4
2 ]. If we translate the center

of this line to the origin we reach to points pc and qc, where

pc =
(

u′1
u′2

)
=

( u1−u3
2u2−u4
2

)
, qc =

(
u′3
u′4

)
=

( u3−u1
2u4−u2
2

)

(8)
Now, to embed the watermark code, we project this line

to the line L0 or L1 depending on the watermarking bit. We
use projection to impose less distortion which results in more
invisibility of the watermark. Fig. 1 shows this step in de-
tails. We call the consequence points in the mapped line as
p⊥ and q⊥. The slope of the L0 line which corresponds to
‘0’ embedding is α if θ , the slope of the primary line (p,q),
is positive and −α otherwise. Similarly, embedding ‘1’, the
slope of L1 line is 1

α or − 1
α depending on the θ .

The position of p⊥ for the case that the slope of the
mapped line is k, can be computed using the intersection of
two following lines:

{
y = kx
y−u′2 =− 1

k (x−u′1)
(9)

and we can use the same approach for q⊥. After some sim-
plification, we reaches to the solution of:

p⊥ =




u′1+ku′2
k2+1

ku′1+k2u′2
k2+1


 , q⊥ =




u′3+ku′4
k2+1

ku′3+k2u′4
k2+1


 (10)

As the final step, we only need to translate back the
mapped line to the center to reach points pw = [u′′1 ,u

′′
2 ] and

qw = [u′′3 ,u
′′
4 ], which can be shown as:

pw =
(

u′′1
u′′2

)
=




u′1+ku′2
k2+1 + u1+u3

2
ku′1+k2u′2

k2+1 + u2+u4
2




qw =
(

u′′3
u′′4

)
=




u′3+ku′4
k2+1 + u1+u3

2
ku′3+k2u′4

k2+1 + u2+u4
2


 (11)

Thus, by inserting (8) in (11) we can show the whole proce-
dure as: 


u′′1
u′′2
u′′3
u′′4


 = T(k)




u1
u2
u3
u4


 (12)

where T(k) is the transfer matrix and computed as:

T(k) =
1

2k2 +2




k2 +2 k k2 −k
k 2k2 +1 −k 1
k2 −k, k2 +2 k
−k 1 k 2k2 +1


 (13)

Therefore, the watermarking embedding process can be
figured as implementation of (12) in which k is defined de-
pending on the watermarking bit and the slope of the primary
(p,q) line as:

k =





α For ‘1’ embedding when θ ≥ 0
1
α For ‘0’ embedding when θ ≥ 0
−α For ‘1’ embedding when θ < 0
− 1

α For ‘0’ embedding when θ < 0

(14)
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The watermarked signal is thus u′′ = [u′′1 ,u
′′
2 ,u

′′
3 ,u

′′
4 ]

which is replaced with u in the selected indices of the ap-
proximation scale of the block. Applying the inverse DWT
we can obtain the watermarked block.

3.2 Watermark decoding
To extract the hidden bit in each block, we implement an op-
timum decoder as follows. Suppose that y = [y1,y2,y3,y4]
represents the approximate coefficients of the selected in-
dices in the received block in the which the watermarked
coefficients contaminated by zero mean Additive White
Gaussian Noise (AWGN) n N(0,σ2

n ). That is, y = u′′+n.
As shown in [9], the image approximation coefficients

can be well modeled by Gaussian distribution function.
Therefore, we implement this distribution to develop our de-
coder and we assume the host signal u to be independently
and identically distributed (iid) Gaussian coefficients. Con-
sequently, the watermarked coefficients u′′ are also Gaussian
as they are resulted by some linear transform through matrix
T(m). Thus, the received coefficients y are Gaussian with
the variance of σ2

y = σ ′′2u +σ2
n .

Now, we can use the model discussed in Section 2. To
this aim we show the four coefficients in y as two points pr =
[y1,y2] and qr = [y3,y4] in the 2-D space and we calculate the
slope of the line connect them to each other as:

c =
y4− y2

y3− y1
=

u′′4 −u′′2 +n4−n2

u′′3 −u′′1 +n3−n1
(15)

As we fixed the slope of the line which connects pw = [u′′1 ,u
′′
2 ]

and qw = [u′′3 ,u
′′
4 ] to k which is defined in (14), we can say:

k =
u′′4 −u′′2
u′′3 −u′′1

⇒ u′′4 −u′′2 = k(u′′3 −u′′1) (16)

Therefore, if we define v = u′′3 −u′′1we can rewrite (15) as:

c =
kv+n4−n2

v+n3−n1
(17)

Again, we can show the numerator and the denominator of
the above equation with a and b. To compute the distribution
of these two variable, first we consider the distribution of v.
Using (12)and (13) we can say:

v = u′′3 −u′′1 =
1

k2 +1
(−u1− ku2 +u3 + ku4)

As the host signal u is supposed to be iid Gaussian, we can
say that v is a Gaussian random variable with mean µv = 0
and variance σ2

v = 2
1+k2 σ2

u . Consequently, the distribution
of the two random variables a and b can be given as a ∼
N(0,k2σ2

v + 2σ 2
n ) and b ∼ N(0,σ2

v + 2σ2
n ). The correlation

coefficient between a and b can be computed as:

r =
kσ 2

v√
(k2σ2

v +2σ2
n )(σ2

v +2σ2
n )

(18)

Now we have c = a
b where a and b are two correlate zero

mean Gaussian random variables. Thus, we can use the dis-
cussions in Section 2 to compute the distribution function of
c which will be defined as in (6).

Having the distribution of the slope function we can sim-
ply use the Maximum Likelihood detection as:

fC(c|1) ≷1
0 fC(c|0) (19)

where fC(c|1) and fC(c|1) are the distribution functions in
condition that the embedded bit respectively is ‘0’ or ‘1’.
Here, without loss of generality we suppose that the received
c is positive. We will see that the discussion is also hold for
negative case. Thus, we can show the conditional distribution
functions as:

fC(c|1) =
1
π

σa|1 σb|1

√
1− r2

|1

σ2
b|1

(c− r|1σa|1
σb|1

)2 +σ2
a|1(1− r2

|1)
,

fC(c|0) =
1
π

σa|0σb|0

√
1− r2

|0

σ2
b|0

(c− r|0σa|0
σb|0

)2 +σ 2
a|0(1− r2

|0)
(20)

where,

σ2
a|1 =

2α2

1+α2 σ2
u +2σ2

n , σ2
b|1 =

2
1+α2 σ 2

u +2σ 2
n ,

σ2
a|0 =

2
1+α2 σ2

u +2σ2
n , σ2

b|0 =
2α2

1+α2 σ2
u +2σ2

n ,

r|1 = r|0 =
ασ 2

u√
(α2σ2

u +(1+α2)σ2
n )(σ2

u +(1+α2)σ2
n )

(21)

These parameters are computed by substituting k as defined
in (14) in definitions of variances of a, b and their correlation
coefficient r (18).

Inserting (20) and (21) in (19) and after some simplifica-
tion, we reach to the following simple decision tool:

c2 ≷1
0 1 (22)

We can see that the optimum decoder is obtained independent
of α . Besides, with the same discussion we can see that this
decoder also hold for negative c. (In that case the only change
is in the sign of r0 and r1).

4. PERFORMANCE EVALUATION

Here, we want to analytically study the error probability
of the suggested watermarking scheme in the presence of
AWGN. The error occurs whenever data bit one is embed-
ded in an image block while zero is decoded at the receiver
end and vice versa. Thus, we focus on the more common
changes that occur because of crossing the decision line.

First, we compute the error probability when the slope
of embedding line (p,q) is positive. Therefore, according to
(22), the error probability can be written as:

P+
e =

1
2

P(c2 < 1|1)+
1
2

P(c2 > 1|0)

=
1
2

P(−1 < c < 1|1)+
1
2

P(c > 1orc <−1|0)

=
1
2
[
(FC|1(1)−FC|1(−1))+(1−FC|0(1)+FC|0(−1)))

]

(23)
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Figure 2: Comparison between the theoretical error proba-
bility and experimental one for a Gaussian random variable
with σn = 40.

Figure 3: Comparing the probability of error with
DWR=19dB between our method and the AQIM method [7]
Substituting FC(c) from (7), we have:

P+
e =

1
2

+
1

2π

[
tan−1

σb|1 − rσa|1

σa|1
√

1− r2
− tan−1

−σb|1 − rσa|1

σa|1
√

1− r2

− tan−1
σb|0 + rσa|0

σa|0
√

1− r2
+ tan−1

−σb|0 + rσa|0

σa|0
√

1− r2
)
]

(24)

where, r = r|0 = r|1 as in (21). As we see in (21), σa|1 = σb|0

and σa|0 = σb|1 ; thus if we define d =
σa|1
σb|1

, we can simplify

(24) as:

P+
e =

1
2

+
1

2π
(tan−1 d−1− r√

1− r2
+ tan−1 d−1 + r√

1− r2

− tan−1 d + r√
1− r2

− tan−1 d− r√
1− r2

) (25)

With a similar argument we can see that the error proba-
bility when the slope of embedding is negative is the same as
P+

e ; that is P−e = P+
e . Consequently, we have Pe = 0.5P+

e +
0.5P−e = P+

e . Therefore, we obtained a closed form solution
for the error probability of the decoder given in (25). In Fig.
2 we compared this theoretical error probability with the ex-
perimental case of Gaussian random variable with σu = 40
(experimental result given for 1000 simulations). As, we can
see the theoretical and experimental results match perfectly.

5. EXPERIMENTAL RESULTS

We have performed several experiments to test the pro-
posed algorithms and evaluate its performance against var-
ious kinds of attacks.

Figure 4: Original (left) and watermarked (right) test images;
Top-down: Plane, Pirate, Boat, and Bridge

Table 1: BER(%) Results of extracted watermark under me-
dian and Gaussian filtering attacks

Image Median Filtering Gaussian Filtering
3×3 3×3 5×5 7×7

Plane 2.69 0.39 1.19 1.19
Pirate 5.23 1.66 2.41 2.77
Boat 15.13 1.73 2.31 2.69

Bridge 15.14 1.11 2.66 2.80

In the first experiment, to validate our method, we present
the performance results for an artificial Gaussian signal under
AWGN attack. The strength of the watermarking in terms of
the Document-to-Watermark Ratio (DWR) is 22dB. The re-
sult of the proposed method for various Watermark-to-Noise
Ratios (WNR) are given in Fig. 3. Here, we also compare
the robustness with an AQIM based method [7] in the same
situation. As we can see, we have lower error probability val-
ues even for very low WNRs. (Both the results for our and
AQIM are for artificial signals (not the DWT of the image
data)).

Then, we conduct several experiments to verify the per-
formance of the proposed technique in real application of im-
age watermarking. Throughout our experiments, we use the
Daubechies length-8 Symslet filters with two levels of de-
composition to compute the 2-D DWT. The watermark data
is embedded in the second level approximation coefficients
of each block. The results are obtained by averaging over 20
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(a) (b)
Figure 5: (a) AWGN attack for various noise variances. (b)
JPEG compression attack for various quality factors.

Table 2: Comparison between our watermarking method and
[6] : BER (%) under AWGN attack.

Method σn

1 2 3 4 5 6 7

[6] 1.00 2.00 3.00 4.00 15.00 25.00 44.00
Proposed 0.00 0.00 0.12 0.12 0.43 1.25 1.05

Table 3: Comparison between our watermarking method and
Wang’s method [10] : BER (%) under Median Filtering at-
tack with window size 3×3.

Method Image
Barbara Baboon Peppers Goldhill

Wang [10] 24.95 31.65 29.35 25.60
Proposed 9.00 11.88 4.25 1.95

runs with 20 different pseudo random binary sequences as
the watermarking signal.

For this study, we use various natural images of size
512× 512. These images consist of Plane, Pirate, Boat,
and Bridge. The original test images and their watermarked
version using the proposed method with 16× 16 block size
and 128 bits message length are shown in Fig. 4. Also, the
embedding slope α used in (14) is set to α = tan−1(65o).
This value is hand optimized to achieve the most robustness
while keep the watermark almost imperceptible. As we can
see, the watermark invisibility is satisfied. The mean Peak-
Signal-to-Noise-Ratio (PSNR) of the watermarked images
are 40.39dB, 40.44dB, 39.89, and 40.85 respectively.

As the first attack, we investigate the effect of AWGN to
the proposed watermarking scheme. Fig. 5(a) shows the Bit
Error Rate of the proposed method for various images versus
different noise power. As we see, the method has a great
resistance against noise attack.

Secondly, the proposed technique is tested against JPEG
compression with different quality factor. As demonstrated
in Fig 5(b), the proposed method is highly robust against
JPEG with different quality factor up to 10%.

Table 1 show the BER results for median filtering, and
Gaussian low-pass filtering attack with different test images.
It can be seen that the proposed scheme is highly robust
against various attacks.

Finally, we compare our watermarking algorithm with
two of the recent blind watermarking techniques, [6] and [10]
for AWGN and median filtering attacks. The simulation re-
sults are shown in Tables 2, 3. We see that the robustness of
our method is considerably better than these two techniques.

6. CONCLUSION

A rotation based watermarking approach with optimum de-
coder is presented. The embedding is performed by multi-
plication of two specific matrices to vector of samples. By
assuming the host samples to be iid Gaussian, the distribu-
tion of noisy watermarked samples is calculated. Then the
ML detector is presented which decides on the embedded bit
by a simple thresholding. The error probability of the de-
coder is analytically investigated. The proposed algorithm is
applied to image signals by using the four approximation co-
efficients of image blocks. Simulation results show that the
proposed algorithm is highly robust against common attacks
such AWGN, filtering, etc. The future work may be per-
formed by generalizing the algorithm for embedding more
bits. In this manner the M-hypothesis test should be used.
Besides, using Human Visual System (HVS) model, we can
optimized the rotation angle to increase the robustness and
invisibility simultaneously.
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