
ON THE PERFORMANCE AND NUMERICAL STABILITY OF SOFT-DECISION
REED-SOLOMON DECODING

Marcel Bimberg, Emil Matúš, Gerhard P. Fettweis

Vodafone Chair Mobile Communications Systems
Technische Universität Dresden, D-01069 Dresden, Germany

Email:{bimberg, matus, fettweis}@ifn.et.tu-dresden.de

ABSTRACT
In this paper we numerically analyze soft-decision Reed-
Solomon decoding based on adaptive Belief Propagation
(ABP) algorithm in an additive white Gaussian noise
(AWGN) and Rayleigh fading environment. We compare
modifications of ABP in terms of frame-error-rate perfor-
mance and decoding latency, while focusing on efficient im-
plementations in software or hardware. Main outcome of the
paper is the analysis of quantization effects when ABP is im-
plemented employing fixed-point values.

1. INTRODUCTION

Since their discovery in 1960 [1], Reed-Solomon (RS)
have been probably the most widely applied error-correction
codes (ECCs) in many digital communications and record-
ing systems. Besides numerous applications in the past, RS
codes are still incorporated into today’s state-of-the-art com-
munications systems such as WiMAX, DVB, DAB and the
newly developed WirelessHD standard [2]. Due to their
ability to correct burst errors and the existence of efficient
hard-decision based algebraic en- and decoding algorithms,
RS codes are still favored over other codes in environments
where delay sensitive services combined with robust com-
munication become necessary. Moreover, in order to cope
with low latency requirements in multimedia networks, PHY
headers and control messages of MAC protocols demand the
usage of shorter block lengths. With their property of being
maximum-distance-separable (MDS) codes, RS codes there-
fore provide good error-correcting performance also at rela-
tive small block lengths.

As the rediscovery of low-density parity-check (LDPC)
codes in the early 90’s showed, the use of long block codes
(in order of tens of thousands bits) combined with itera-
tive, message-passing algorithms allows to asymptotically
approach the capacity of the AWGN channel. However, ap-
plying the standard BP decoding to RS codes leads to poor
error-correcting capability due to many short cycles in the
high-density parity-check (HDPC) matrices. In order to im-
prove the performance of BP also for HDPC matrices, Jiang
and Narayanan recently proposed in [3] an iterative, adap-
tive BP (ABP) algorithm. This algorithm compares favor-
ably with other soft-decision decoding algorithms and can be
regarded as a fundamental step towards message passing de-
coding of RS codes. El-Khamy and McEliece later concate-
nated in [4] ABP with the Koetter-Vardy [5] algebraic soft-
decision decoding (ASD) algorithm, which enabled them to
achieve near optimal performance for relatively short, high-
rate codes. In [6] a combination of ABP and the ordered-
statistics-decoding (OSD) was used to improve the error cor-
recting capability of medium length codes.

Due to the significant performance gains ABP and it’s mod-
ifications are able to achieve when decoding RS codes, we
investigate in this paper performance-cost trade-offs when
ABP based algorithms are considered for implementation in
software or hardware. Moreover, since these algorithms are
based on the same operations as decoding algorithms for
LDPC codes, future multi-standard, mobile devices could
easily extend their decoding capabilities into a domain usu-
ally demanding dedicated hardware units, thereby saving
cost-intensive chip area and implementation time. Beside
performance studies for the AWGN and Rayleigh fading
channel, we therefore present as a first step towards an em-
bedded application, numerical results regarding quantization
effects and explore modifications which generally result in
considerable complexity and latency reduction.
The remainder of this work is organized as follows. Some
preliminaries including the system model are given in the
following section 2. Simulation results and corresponding
discussions are provided in section 3. Finally, section 4 con-
cludes the paper and suggests further research directions.

2. ITERATIVE DECODING OF REED-SOLOMON
CODES USING ABP

2.1 Description and Properties of RS codes

Let RS(N,K) be a Reed-Solomon code which is defined over
a finite field GF(2q),q ∈ N and let β be a primitive ele-
ment of the field. K represents the number of information
symbols, while the block length N is equal to N = 2q − 1.
The minimum distance of the RS code can be denoted by
dmin = N −K + 1. Let m = [mo,m1, . . . ,mK−1] be a mes-
sage of K information symbols. These symbols can be as-
sociated with an information polynomial m(x) = m0 +m1x+
. . .+mK−1xK−1, which is encoded through multiplication by

a generator polynomial g(x) =
N−K
∏
j=1

(x− β j) employing the

equation c(x) = m(x)g(x). By this definition, each codeword
c = [c0,c1, . . . ,cN−1],ci ∈ GF(2q) is interpreted as a code
polynomial c(x). On decoder side, one could verify the valid-
ity of c by evaluating the well known parity-check equation
c ·HT

q = 0, with Hq being a (N−K)×N dimensional matrix
consisting of (N−K) codewords spanning the dual code of
RS(N,K) [7]:

Hq =




1 β . . . β (N−1)

1 β 2 . . . β 2(N−1)

...
...

. . .
...

1 β (N−K) . . . β (N−1)(N−K))


 . (1)
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Because the ABP algorithm operates on bit-level reliability
values, Hq as well as c need to be transformed into an equiv-
alent binary image representation Hb and cb, respectively.
Depending on the chosen basis for representing the symbols
of GF(2q) one could get different binary images of Hq. In
this paper, we assume normal basis representation for which
the transformation can be found e.g. in [8]. Correspond-
ingly, each element of Hq will be represented by a q× q
sub-matrix in the binary image Hb. Hence, Hb will be of
size (N−K)q×Nq. Now let n = N · q and k = K · q be the
length of the codeword and the information at bit level, re-
spectively. Again, we can compute the syndrome cb ·HT

b ,
which becomes zero if cb = [c0,c1, . . . ,cn−1],ci ∈GF(2) is a
valid codeword.

2.2 System Model
Before describing the ABP algorithm formally, we first as-
sume that the encoded bits c j, ( j = 0, . . . ,n−1) are modu-
lated using antipodal BPSK with a sent symbol taking the
value s j = (−1)c j . The binary symbols are either trans-
mitted over an AWGN or a Rayleigh fading channel (Fig.
1). On receiver side, the input values can be specified by
r j = |a j|s j + n j, with n j being real valued additive white
Gaussian noise and a j being the complex fading factor which
becomes a = 1 for the AWGN, and |a j| being Rayleigh dis-
tributed otherwise. By setting E(|a j|2) = 1 we suppose there
is no loss of energy during transmission. Additionally, for
the Rayleigh channel, a j is assumed to be constant for q con-
secutive BPSK symbols, i.e. a slowly fading channel model
is applied.

RS 
Encoder

data 
source

BPSK
Mod

RS 
Decoder

BPSK
Demod

data
sink

jc js

jα

jn(0)( )jL r

Figure 1: System Model

2.3 Adaptive Belief Propagation
The BP algorithm as original proposed in [9] has found nu-
merous application in the decoding of linear block codes
with sparse graph representations, as e.g. LDPC codes. In
[10] it was shown that using BP decoding for LDPC codes
can approach the Shannon limit. However, the binary im-
age Hb of the parity-check matrix of a RS code is of high-
density, leading to many short cycles in the corresponding
Tanner graph representation. These short cycles counteract
the BP algorithm in converging to the correct codeword, as
they introduce correlation between exchanged belief infor-
mation. Messages, sent from check nodes to variable nodes
and vice versa, are therefore loosing their independence, re-
sulting in poor error-correcting performance of the BP algo-
rithm. In [3] a modified version of BP, namely ABP, was
proposed where the parity-check sub-matrix corresponding
to the n− k least reliable bits (LRBs) in Hb is reduced into
an identity matrix before standard BP decoding is applied.
Hence, error propagation from the unreliable bits is effec-
tively reduced, which facilitates ABP decoding also to im-
prove the soft-decoding performance of linear block codes
having HDPC matrices with a large number of short cycles.

2.3.1 BP decoding

In relation to [11], each parity-check matrix Hb can be de-
scribed by a bipartite graph consisting of n variable and
(n− k) check nodes, that are connected with each other by
edges when the corresponding entry H(i, j) in Hb (i being the
row index, j being the column index) equals one. Decoding
using BP can be accomplished by iteratively exchanging re-
liability information (called messages) between variable and
check nodes. Messages mx→y passed along the edges are cal-
culated in two stages according to the following decoding
equations:

• Check node update:

m(l+1)
i→ j = ∏

j′∈Vi\ j

sign(m(l)
j′→i) · f ( ∑

j′∈Vi\ j

f (|m(l)
j′→i|)) (2)

• Variable node update:

m(l+1)
j→i = L(0)(r j)+θ · ∑

i′∈C j\i

m(l+1)
i′→ j (3)

Symbols:
l count index for inner BP iterations
L(0)(r j) initial log-likelihood ratio of bit j
θ variable node attenuation coefficient (0 < θ ≤ 1)
f (x) f (x) = log exp(x)+1

exp(x)−1
m j→i message passed from variable node j to check node i
mi→ j message passed from check node i to variable node j
Vi\ j set of all variable nodes connecting to check node i except for node j
C j\i set of all check nodes connecting to variable node j except for node i

Before the BP algorithm iterates on a matrix Hb, variable
node messages are initialized by the current bit-reliability
values m(0)

j→i = L(0)(r j). In the first iteration of BP decoding
these values can be expressed in terms of log-likelihood
ratios (LLRs) as observed from the channel:

L(0)(r j) = log
Pr(r j|c j = 0)
Pr(r j|c j = 1)

= 4|a j|R Eb

N0
r j, (4)

with R = K/N being the rate of the RS(N,K) code and Eb/N0
the signal-to-noise ratio used during transmission. We as-
sume that a j is known to the receiver (perfect channel state
information). In the last iteration of BP, variable node up-
dates are skipped and new bit-reliability values are computed
according to:

L(k+1)(r j) = L(k)(r j)+α · ∑
i∈C j

m(l+1)
i→ j , (0 < α ≤ 1) (5)

with k being the outer iteration index and L(k)(r j) the LLR of
bit j at iteration k. As the BP algorithm is only suboptimal
when decoding dense parity check matrices, the parameters
α and θ , which attenuate the influence of the extrinsic in-
formation, need to be chosen carefully for each individual
code (this is different from LDPC codes, where α and θ can
usually be set to one as the BP decoding is considered to be
optimal due to the nonexisting short cycles).

2.3.2 ABP decoding

As mentioned above, the ABP algorithm first adopts the
matrix Hb according to the LRBs. This can be accomplished
by first sorting the LLRs, followed by Gaussian elimination
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Figure 2: Decoding chains incorporating the ABP algorithm:
a) ABP-HD b) ABP-BM

(GE) of the columns which correspond to the LRBs. After-
wards, the BP decoding algorithm is applied to the adopted
matrix H(k+1)

b = φ(H(k)
b , |L(k)|) with a preset number of

inner iterations lmax = BPit . Depending on a chosen stop-
ping criterium there are then several possibilities to continue:

a) ABP-HD:
Perform hard decisions on the updated bit-reliability values

ĉ j =

{
0 if L(k+1)(r j)≥ 0
1 else

and check if BP decod-

ing has been successful by computing ĉ ·HT
b . Decoding is

finished if it is equal to zero, otherwise ABP continues with
a new outer iteration unless a maximum number of outer
iterations kmax = N1 has been reached.

b) ABP-BM/KV:
After each bit-reliability update (5), the corresponding word
is added to a global list which can be used as input for a sec-
ond decoder D (e.g. a hard-in hard-out Berlekamp-Massay
(BM) or a soft-in hard-out Koetter-Vardy (KV) decoder).
Decoding stops if the maximum number of outer iterations
has been reached. Finally, the codeword ĉ is selected from
the list of valid codewords decoded by the decoder D,
using e.g. minimum Euclidean distance. In this paper, we
restrict our comparison to the ABP-HD against the ABP-BM
decoder as they are pictured in Fig. 2.

3. SIMULATION SETUP AND RESULTS

3.1 Comparison of ABP-BM with ABP-HD

Considering the two decoding chains from an implementa-
tion point of view, it gives reason to the question on the cod-
ing gain loss if the less complex ABP-HD is deployed instead
of ABP-BM. Independent of the decision if the ABP algo-
rithm is going to be implemented as software on a digital
signal processor (DSP) or if a dedicated hardware acceler-
ator is going to be used, ABP-BM would require a second
decoder D which would demand at least more computational
power and result in higher latency. In particular the fact that
both the Berlekamp-Massay as well as the Koetter-Vardy al-
gorithm are based on algebraic operations over higher order
fields, would not only require additional instructions for the
corresponding field arithmetic, but also much more area due
to dedicated computational units (e.g. for Galois field multi-
plication) [12]. Therefore, as ABP-HD is just based on oper-
ations over GF(2), it would fit the requirement for universal-
ity of future multi-standard mobile devices very well. Hence,
an implementation would not be restricted to some specific
code parameters q and g(x) as it usually becomes necessary
for the BM as well as the KV algorithm. In Fig. 3(a) the BM,
ABP-HD and the ABP-BM algorithms are compared with
each other for the AWGN and in Fig. 3(b) for the slowly fad-
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Figure 3: Performance of BM, ABP-HD and ABP-BM for differ-
ent RS codes

ing Rayleigh channel. N1 we set to a maximum number of 50
iterations, while BPIt was set to one, hence variable node up-
dates were skipped and instead bit reliabilities were updated
immediately according to (5) after completion of check-node
updates.

If we compare ABP-HD with ABP-BM under AWGN
conditions, one can observe for larger block lengths the
growing coding gain loss of ABP-HD as the SNR increases.
At FER of 10−3 the loss compared to ABP-BM is about
≈ 0.3 dB for the RS(63,45) and ≈ 0.4 dB for RS(127,90).
For smaller block lengths, as e.g. for RS(31,22), we ob-
served almost no difference between both algorithms down
to the FERs presented here. As all codes in Fig. 3(a) were
chosen to have R ≈ 0.71, one can also notice the shrinking
coding gain of ABP-based algorithms compared to classical
BM as the block length becomes larger . At a FER of 10−3

the gain is ≈ 2.3 dB for RS(31,22), while for RS(127,90) it
shrinks down to≈ 0.8 dB. From wireless system design point
of view, this suggests to use e.g. LDPC codes for larger block
lengths, while RS codes decoded by ABP would be well
suited for smaller block lengths. For the Rayleigh channel

1168



we investigated two shortened RS codes which are included
e.g. in WiMAX (RS(64,48),q = 8) and in DVB standards
(RS(204,188),q = 8). One can observe the large coding gain
improvement of ≈ 6 dB which ABP-HD is able to achieve
at a FER of 10−3 for this more practical system model. Un-
like for the AWGN channel, we could not notice valuable
coding gain when ABP-BM is used instead. From the simu-
lations we also observed, that the larger the number of parity
checks, the more carefully the damping coefficient α needs
to be chosen. For a RS(31,25) code α could be set to 1

32
or 1

8 resulting in almost no difference in FER performance,
while for the RS(64,48) and RS(204,188) we found the best
results only for α = 1

16 (we restricted α to values of power of
two which could be easily implemented on DSPs using shift
registers). Moreover, considering especially shorter block
lengths with FER being less sensitive to α , we recommend
to set α as large as possible, as this reduces the number of it-
erations necessary to find a valid codeword, hence decoding
latency can be decreased.

3.2 Sum-Product vs. quantized Min-Sum Algorithm
Even if some state-of-the-art DSPs possess complex floating
point operations, one is still faced with the need to imple-
ment the function f (x) and its inverse for check-node opera-
tion (2). Especially if a parallel implementation of the ABP
algorithm is aspired, the approximation of f (x) by means of
lookup-tables would increase the area as well as power con-
sumption significantly. As already known from LDPC codes,
equation (2) can be approximated by the Min-Sum (MS) al-
gorithm which overcomes the restriction to use lookup-tables
with:

m(l+1)
i→ j = ∏

j′∈Vi\ j

sign(m(l)
j′→i) · min

j′∈Vi\ j

(|m(l)
j′→i|). (6)

In Fig. 4(a) and 4(b) we investigated the FER perfor-
mance of the ABP-HD algorithm using the Sum-Product al-
gorithm (SPA) and its quantized MS approximation for a
RS(31,25) and the RS(64,48) code. For all the quantized
simulations we skipped the scaling factor 4 in equation (4)
and applied instead L(0)(r j) = |a j|R Eb

N0
r j. We further used

a uniform quantization scheme which clips the soft-input
values and exchanged messages into the range spanned by
−Th ≤ L(0)(r j) ≤ +Th, with Th being the optimal thresh-
old found by simulations. Depending on the number of
bits W used for quantization of soft-information, the quan-
tization interval is given by ∆ = 2Th

2W−1 . Due to the sum-
mation in (5) we assumed the addition to be more precise
than the given bit-width W of the exchanged messages. This
does not cost much complexity as the summed values can
be stored locally in registers. For RS(31,25) it can be ob-
served that 6 bit message quantization (with 8 bits for sum-
mation) results in negligible performance loss for the AWGN
(≈ 0.05 dB @FER = 10−4) as well as for the Rayleigh chan-
nel (≈ 0.15 dB @FER = 10−4) if one compares it with ≈ 2
dB and 7 dB coding gain respectively over BM algorithm.
For RS(64,48) 6 bit message quantization even coincides
with SPA floating point implementation in a Rayleigh fad-
ing environment. Considering the smaller RS(31,25) code
with only 4 bit message quantization and 6 bit summation,
the FER of MSA compared to SPA degrades by≈ 0.2 dB for
AWGN and≈ 1.0 dB for the Rayleigh channel at FER=10−4.
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Figure 4: Performance of quantized MSA in comparison to SPA

For the larger RS(64,48) code, we found a minimum of 5
bits adequate for message quantization. This corresponds to
the quantization which is usually employed for LDPC codes.
In Fig. 5(a) and 5(b) we also compare the average num-
ber of iterations executed until a valid codeword was found.
Clearly, the number of iterations decreases as the SNR be-
comes larger. For the RS(31,25) in a low SNR, Rayleigh
fading environment we found a large increase in the number
of iterations if only 4 bits are used for message quantiza-
tion. Considering the variance, which is also plotted for the
sake of clarity, one can also notice a large increase for the
AWGN channel. Much better results we obtain if 6 bits are
employed, which not only improves FER but also reduces the
average number of iterations for low SNR values compared
to the SPA. Although MSA is originally used as an approx-
imation of the SPA, SPA is not optimal for decoding HDPC
matrices. Hence, MSA seems to be better suited at least for
low SNR values as it can reduce latency. As the operating
point is moved towards lower FERs, the difference between
SPA and quantized MSA diminishes. A similar behavior can
be observed for the RS(64,48) code.
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Figure 5: Average number of iterations using SPA and MSA

3.3 Performance of Complexity Reduced MSA

Especially if BPIt is set to one and the LLRs are therefore re-
ordered every iteration, one can restrict the bit-reliability up-
dates to the LRBs, hence reducing the number of operations.
Besides, we can take advantage of the fact that we already
know the sorting index of the input LLRs from the GE step.
Therefore, no extra sorting operations become necessary.
Updating only the LRBs can be justified by the fact that the
corresponding bits are with higher probability in error than
the most-reliable bits (MRBs). Especially for the Rayleigh
fading channel, where the fading factor a j dominates the re-
liability of the received bits, the deployment of complexity
reduced MSA can save significant amount of computation
while still providing competitive FER performance. For the
RS(31,25) code we simulated the MSA with a partial reli-
ability update incorporating only 25% of the bits with the
lowest LLR. From Fig. 4(b) it can be observed that with 6
bit message quantization the results almost coincident with
full MS update. The same we obtained for the RS(64,48)
code using 6 bit message quantization while updating only
35% of the LLRs (not shown in the figures). Reducing quan-
tization to 5 bits still results in good FER, while the number
of iterations increases slightly for low SNR values. Further
restriction of updated LLRs leads to noticeable performance
loss. However, updating only 20% of all LLRs still results
in ≈ 4.1 dB coding gain over BM at a FER of 10−3. In or-

der to emphasize the large reduction in decoding time when
the reduced MSA is employed, we provide the average de-
coding time per iteration for several RS codes in table 1. We
would like to point out, that the saving in decoding time for
reduced complexity MSA would be even higher if the GE
step would be optimized as e.g. proposed in [4]. In order to
achieve the same FER as with the full MS update in a AWGN
channel, the reduction could not be made as small as for the
Rayleigh channel. The reason for that basically comes from
the AWGN distribution, which leads to a smaller difference
between least- and most reliable bits, hence more bits are re-
quired to be updated for better belief propagation.

SPA full MS red. MS (25%)
RS(31,25) 0.02187 (100%) 0.00496 (23%) 0.00087 (4%)
RS(64,48) 0.92191 (100%) 0.20617 (22%) 0.08740 (9%)
RS(204,188) 13.77440 (100%) 2.78330 (20%) 0.53878 (4%)

Table 1: Average decoding time per iteration for ABP-HD (in sec-
onds), measured on a Intel Xeon CPU (2.8 GHz) using Microsoft
Visual C++ 2005 Compiler

4. CONCLUSIONS

In this paper, we investigated soft-decision decoding of RS
codes based on the ABP algorithm. We focused on the
performance-cost trade-offs that become necessary if ABP
is employed in future wireless, embedded systems and pro-
vided adequate parameter settings in order to achieve accept-
able error-correcting performance. We showed for short to
medium length codes, that ABP-HD based on 5 to 6 bit quan-
tized MS approximation can provide significant lower de-
coding complexity than the SP algorithm at almost no loss
of FER performance in Rayleigh fading environments. Be-
sides, under Rayleigh conditions, decoding latency of MS al-
gorithm can be further decreased employing partial reliabil-
ity updates. Future work will investigate the trade-offs when
the number of BP iterations is not restricted to be one as in
the analysis presented here. Also, timing measurements of
the proposed quantized MSA in an actual, embedded system
would be of interest.
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