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ABSTRACT 

A method of local contrast enhancement in space frequency 

domain together with a segmentation method for medical 

3D-CT image data by active contours is presented. The pur-

pose of the project is to define tumor volumes for irradiation 

in cancer therapy. For a better performance of the contour-

ing algorithm the image is primarily processed by a nonli-

near operator in space frequency domain for local contrast 

enhancement. 

1. INTRODUCTION 

Medical image processing has become an important subject 

for diagnosis, surgery, irradiation planning, medical research 

and visualization in cancer treatment. In radiotherapy it is 

necessary to precisely define the target volumes for irradia-

tion to avoid irradiating healthy tissue. For this purpose the 

tumors have to be segmented in all the slices of a computer 

tomography (CT) image data set.  

The new technique of 4D-CT imaging requires the delinea-

tion of tumours in 3D data sets to reconstruct the tumour 

volume. The data are acquired for 12 phases of respiration. 

According to the size of the tumour it needs to delineate in 

the range of 60 to 120 2D-CT data sets. 

At present no fully automatic method is efficiently segment-

ing medical images, therefore semiautomatic contouring 

methods like active contours are used. Since the first active 

contour model was published by Kass et. al. in [1] under the 

name of snake, different algorithms based on minimizing an 

energy function were developed. In this paper an algorithm is 

presented, in which the energy function was designed to op-

timize contour detection in CT-image data and to increase 

automation in target volume definition. 

The main idea is to delineate the first slice of the tumour im-

age by setting manually a starting contour for the snake. Af-

ter the active contouring process, the obtained contour is 

transferred as a starting contour to the next slice. In each step 

manual corrections are allowed. 

Due to the quality of the image data often some pre-

processing of the image data is necessary like denoising or 

contrast enhancement. In this paper a method for contrast 

enhancement in space frequency domain is presented as an 

initial step before contour detection. The contrast enhance-

ment is done by means of the wavelet transform to enhance 

the local contrast of different tissue regions in 3D-CT data 

sets.  

2. MATERIALS AND METHODS 

Modeling tumor volumes by active contours implies interac-

tively defining an initial approximate contour in the region 

of the tumor, which will be iteratively adapted to its actual 

structure boundary. In certain situations the active contour is 

captured in the vicinity of small gradients of the tumor sur-

face by farther located strong edges but not associated with 

the tumor, e.g. by bones. If the contrast at these weak edges 

of the tumor could be enhanced, an active contour detection 

will work more successfully. 

 

2.1 Contrast enhancement using wavelet modulus 

maxima 
 

The Dyadic Wavelet Transform 

A good approach to local contrast enhancement is the use of 

wavelets, which enable localization in space frequency do-

main and thus the manipulation of local features. In compar-

ison to other traditional enhancement techniques, wavelet 

decomposition enables higher decomposition levels to dis-

criminate real and false edges generated by noise. 

It is appropriate for edge detection application to use the 

dyadic wavelet transform, which results in undecimated sub-

bands because of its translation invariance. 

The 2D dyadic wavelet transform [2] can by described by 

convolution of the image f(x, y) with two wavelet functions 

1
(x, y) and 2

(x, y) to obtain the detail sub-bands in hori-

zontal and vertical direction and with one scaling function 

(x,y) to obtain the approximation sub-band. For edge detec-

tion the wavelet functions should satisfy: 
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where (x,y) is a smoothing function. 
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k  for k=1,2 then for any 

scale s the wavelet transform of ),( yxf  has two detail sub-

bands: 
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),(*),( 11 yxfyxfW ss   and ),(*),( 22 yxfyxfW ss   

For the implementation of the fast wavelet transform only the 

dyadic sequence of scales   Zj
j

2  is of interest. Taking into 

account (1) the detail components at each scale j2  are given 

by the gradient of the convolution of the image function 

),( yxf  with ),(
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The approximation sub-band ),(
2

yxfS j  at scale j2  is de-

fined by convolution with the scaling function: 
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yxfyxfS JJ   

The dyadic wavelet transform is applied up to a certain 

coarse scale J2 . At this scale a set of sub-band images 
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,,  is available, which enable 

analysis and processing of details at all scales j2 . 

 

For the reconstruction with the inverse wavelet transform the 

same scaling function is used in connection with two recon-

struction wavelets ),(1 yx  respectively ),(2 yx [2], thus  
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The fast dyadic wavelet transform is applied in practice by 

convolving the image with two filters H and G, correspond-

ing to the scaling respectively to the wavelet function, both in 

x and y direction.  

The reconstruction is done by summing the convolution of 

the approximation sub-band with the filter H  and the convo-

lution of the detail sub-bands with the filters K  and L . The 

definition of these filters with respect to , 1
, 2

, 1
 and 2

 

is fully described in [2]. The relations between these filter 

functions are given by: 
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The wavelets used in this paper are those given in [2] with 

the filter functions: 
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Numerical values of the filter coefficients are listed in [2]. A 

different class of dyadic wavelets is presented in [3].  

 

Edge points, which represent high frequency components, 

can be characterized by the modulus maxima of the detail 

sub-bands. To use this information we define for each scale 
j2  the modulus ),(
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Contrast enhancement  

Modification of the contrast of the image ),( yxf  can be 

achieved by applying an appropriate operator on the detail 

sub-bands or on the modulus at the different scales j2 . 

The interest of the contrast enhancement in this special appli-

cation of tumour detection is to emphasize in space fre-

quency domain local low contrast edges while keeping the 

remainder of the image regions unchanged and to avoid en-

hancing unwanted features. 

In [4] and [5] piecewise linear operators, which are used 

separately on each detail sub-band, are described. In [6] and 

[7] nonlinear operators are presented, which favour the en-

hancement of low contrast regions. 

The main disadvantage of most of these operators is, that 

contrast enhancement is not limited to a given contrast re-

gion. Another concern is to design an operator, which modi-

fies high frequent edges and preserves low frequent struc-

tures. 

 

The operator )(mG  [8] used in this paper is based on the 

Gaussian function G , which allows a large enhancement 

within the region of interest, while the enhancement outside 

is small: 

2

2)(
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in which the variable m  represents the modulus values. 

The contrast range and values are determined by parameters 

  and b of the Gaussian function, while the factor of en-

hancement is determined by parameter a . The operator is 

represented graphically in figure 1. 

 
Figure 1 – Contrast enhancement operator )(mG  with 5.1a , 

50b  and 5  

(6.6.1) 
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The operator, given in eq. (2), is applied on the local maxima 

in the direction of the corresponding angle in the modulus 

image of the detail sub-bands. This results in contrast en-

hancement only at edges. After applying the operator, the 

detail sub-bands are updated from the modified modulus and 

the unmodified angle for each coefficient. By using the in-

verse wavelet transform, the enhanced image is obtained. 

 

2.2. Active contours 
 

For defining the tumour boundaries within an image 

),( yxf , an active contour method is applied. This method 

is based on the representation of the contour as a closed pa-

rametric curve  

2]1,0[: Rv  , Tsysxsv ))(),(()(  , Tsysx ))(),((  

are the coordinates of the control point s , characterized by 

an energy function. Based on this energy function the initial 

manually defined curve approaches the contour of the tu-

mour by an iterative process.  

In this paper the curve )(sv  was modelled by a closed cubic 

Hermitean spline, which guarantees, that the user defined 

control points are part of )(sv . 

 

The energy function of )(sv  

The energy function )(vE of )(sv  is expressed by a sum of 

an internal, an potential and a corner energy [1,9]: 

      )()()()( vEvEvEvE imagepotint        (3) 

The internal energy controls the shape of the curve and is 

composed of an elastic and a curvature energy: 
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)(vEelas  represents the tangential tension of the curve and 

)(vEcurv  the curvature which are weighted by the coeffi-

cients elastw  and curvw . 

 

The potential energy )(vE pot indicates to what extent the 

curve approaches the boundary and is based on the grey lev-

els in the image. )(vE pot  is expressed using the grey level 

gradient ))(( svP  by: 
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In discrete images the gradient can be approximated by a 

high-pass filter. In this application the Sobel filter was used. 

 

The potential energy can be expressed as:  
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The image energy [1] is expressed by: 
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in which ))(()),(()),(()),(()),(( svfsvfsvfsvfsvf xyyyxxyx  

are the corresponding partial derivatives of the image func-

tion ))(( svf . 

 

When the curve )(sv  adheres to edges in the image, the en-

ergy is minimized. Thus the segmentation is reduced to an 

optimization problem. 

The minimization of the energy function can be achieved in 

different ways. In this work minimization was performed by 

means of a Greedy algorithm. 

 

In digital images the analogue functions have to be discre-

tized. The parametric curve )(sv  is defined by a finite set of 

N  control points )*( ihv
i

v  , i = 1, ..., N-1, in which 

Nh /1  is the sampling interval. Approximating the deriva-

tive by finite differences and replacing the integral with a 

sum, equation (3) becomes: 
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To improve the efficiency of the contour detection a new 

gradient-angle energy was added to the potential energy. 

Considered is the angle between the grey level gradient and 

the actual contour, calculated by the scalar product. This e-

nergy forces the contour to move in direction of the normal 

vector of the curve )(sv [9]. 
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in which  Tiyixi vfvfvG )(),()(  . This energy is added to 

the total energy )(vE  and is included in the process of mini-

mization. 

Finally a balloon force [10] is applied to reduce errors, if the 

initial contour is not set near enough to the effective bound-

ary or is set in a region of constant grey levels. 
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Minimization of the energy by a Greedy algorithm 

The minimization is an iterative process working as follows: 

for each control point 
i

v  of the curve the energy of the 

neighbouring pixels is calculated. The point 
i

v  is then 

moved to the position with the smallest energy. The iteration 

ends if the modification of the curve in two successive steps 

is smaller than a defined threshold. 

 

Improvements of the algorithm 

 The elastic energy is redefined to avoid the accumu-

lation of the curve points in local minima [11]: 

 1)(  iielasielast vvdwvE ,  

in which d  is the average distance between the 

neighbouring points. 

 

 The curvature energy [11] is expressed by : 

11 2)(   iiicurvicurv vvvwvE . 

The weight coefficient curvw  may be decreased lo-

cally to improve detection of tumours with strong 

curvature. 

3. MEASUREMENTS 

 

 
 

Figure 2 - Test image (left) with graph of the grey levels of an  

image line and processed image (right) after enhancement with an 

operator given in eq. (2) using parameters   = 10 and b = 4.5. Pa-

rameter b is selected in dependency of the modulus maxima values. 

Only grey level transitions within a certain range of small grey level 

differences are affected. 
 

A series of measurements was carried out to evaluate the 

performance of the contrast enhancement operator and the 

influence of its different parameters on synthetic images. It 

was studied how the number of scales used in the dyadic 

wavelet transform affects contrast enhancement in medical 

images. 

The enhancement algorithm was first tested on synthetic 

computer generated images. It was observed, that modifying 

the details at the first decomposition level will significantly 

increase noise, while using only the following decomposition 

levels gives a better result. Using more than 3 decomposition 

levels in the wavelet transform increases computational ef-

fort, but does not affect the results significantly, so in the 

algorithm the scales used were reduced to the first 3 sub-

bands, from which only the second and the third were modi-

fied. 

In figure 2 the local enhancement at a certain contrast range 

of the operator, given in eq. (2), is illustrated. By applying 

the operator the grey level contrast is enhanced only in a 

small range of grey level differences. Smaller or larger grey 

level differences remain unaffected. By varying parameter σ 

the width of grey level differences is changed. The parameter 

b  controls the position of the maximum enhancement. Its 

value is selected in dependency with the features that have to 

be enhanced. 

 

The active contour algorithm was tested at first with test im-

ages of a sphere, with different starting contours, e.g. a start-

ing contour outside and inside of the structure to be detected. 

In figure 3 the results of such a test are given. 

 

Some more tests were done to verify the improvement ob-

tained from adding the gradient angle energy and the balloon 

force [9]. 
  

4. RESULTS AND DISCUSSIONS 

The segmentation in the proposed version of the active con-

touring was tested on several lung tumours with different 

shapes and on other anatomical structures like the prostate. 

Figure 4a) shows a tumour completely inside the soft lung 

tissue. The tumour is separated from the surrounding tissue 

by good contrast in most parts of the contour. In figure 4b) a 

tumour, adherent the thorax wall, is shown. Contrast differ-

ences between tumour and lung tissue respectively the thorax 

wall vary very much and demand high sophisticated algo-

rithms to detect the correct tumour boundary. Figure 4c) 

shows a ramified lung tumour. Figure 4d) shows a prostate 

with only low contrast to the surrounding tissue and high 

contrast structures in its vicinity. 

The results were compared with manually delineations done 

by an expert radiologist. Using a similarity index: 

BA

BA

VV

VV
SI




 , 

in which VA and VB are the automatically and the manually 

delineated volumes respectively, we found indices in the 

range of 75% to 85% [9]. 

  
 

Figure 3 – Active contour detection on test image with starting 

contour outside the structure (left) and starting contour inside the 

structure (right). 
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a) 

 
b) 

 
c) 

 
d) 

 

Figure 4 – a)-c) Segmented lung tumours d) Segmented prostate. 

The contours detected before and after contrast enhancement are 

dark grey respectively light grey. The white contours in a) and b) 

are the manually delineated contours by an expert radiologist. 

 

5. CONCLUSIONS 

In this work we presented a combination of active contours 

with wavelet decomposition and reconstruction to enhance 

image contrast within a certain range of grey level differ-

ences. The aim is to decrease time consuming interactions by 

the radiologists during a delineation process. We focussed on 

4D-CT images of lung tumours in which the resulting con-

tours of the precedent image slice is transferred as starting 

contour for the subsequent slice.  

To judge the results, it must be ensured, that the contouring 

algorithm reproduces the same or nearly the same tumour 

boundaries when it is repeatedly applied. In cases of low 

contrast images and when the starting contour was defined 

by different data point positions or when or the tumour struc-

ture was too irregular, this was not always achieved. 

In figure 4 a) and b) in the wavelet enhanced images the 

automatically produced grey contours fit better to the white 

contours, which were defined manually by an expert radiolo-

gist, than the dark grey contours, which were produced with-

out enhancement. 

In figure 4 c) it may be seen, that for ramified structures nei-

ther the active contours without enhancement nor the con-

tours with enhancement fit the real boundary of the tumour. 

In figure 4 d) the grey contour obtained after wavelet en-

hancement is much closer to the prostate boundary then the 

dark grey contour produced before enhancement. 

It is necessary to define standardized parameters for the ac-

tive contouring and the wavelet enhancement as well, de-

pending on different models of tumour situations.  

In the case of contouring the lung tumours we used a model 

based reduction of parameters down to two parameters. 

These two parameters could be applied to all of the 60 to 120 

2D-CT images of the same 4D-CT data set. 

In the case of strongly ramified tumours, the number of con-

trol points for active contouring must be adapted accordingly. 
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