
A CENTERED DFT-BASED DISCRETE FRACTIONAL FOURIER TRANSFORM AND
ITS APPLICATION TO CHIRP SIGNAL PARAMETER ESTIMATION

Ahmet Serbes1 and Lutfiye Durak2

Department of Electronics and Communications Engineering, Yildiz Technical University,
Yildiz, Besiktas, 34349, Istanbul, Turkey, phone: + (90) 212-383-2490

1aserbes@yildiz.edu.tr, 2lutfiye@ieee.org

ABSTRACT

We propose a new discrete fractional Fourier transform
(DFrFT) scheme based on eigentransforms of the centered
DFT matrix and present its application to chirp parameter
estimation problem. We show that eigentransforms of the
centered DFT provides a simple and straightforward method
in the derivation of the centered DFrFT matrix. The method
makes use of Gram-Schmidt orthogonalization algorithm to
refine the eigenvectors that are employed in the DFrFT ma-
trix computation. The simulation results show how the pro-
posed DFrFT mimics its continuous counterpart and finally
an application on chirp rate estimation is presented .

1. INTRODUCTION

The fractional Fourier transform (FrFT) has found many ap-
plications in various areas including signal processing [1],
time-frequency analysis [2], quantum mechanics [3], and sig-
nal recovery [4]. FrFT is a potentially powerful tool in the
analysis of chirp-type signals. As chirp signals are widely
used in radar, sonar and communication systems, estimation
of their parameters such as amplitude, chirp rate, initial fre-
quency and initial phase is an important problem [5].

In recent years, so many efforts have been invested in
obtaining the discrete Fractional Fourier transform (DFrFT)
that inherits the properties of the continuous FrFT [6]. Early
works on DFrFT can be split into two major groups. The first
approach is based on an S matrix introduced by Dickinson et
al. [7] which is an almost-tridiagonal matrix commuting with
the DFT matrix. In this approach, the eigenvectors of the S
matrix are shown to be discrete Hermite-Gauss-like functions
[8, 9].

The second approach is based on an exact-tridiagonal
Grünbaum [10] matrix, which is employed in combination
with the S matrix to furnish a basis of eigenvectors for the
DFrFT matrix [11]. Both of the approaches are approxima-
tions for the Hermite-Gauss eigenvectors of the DFT matrix.

In this work we introduce a different approach to derive
the DFrFT matrix, which mimics the properties of the con-
tinuous FrFT. Using a simple and straightforward derivation
of the eigenvectors of the DFT matrix, we employ a Gram-
Schmidt based orthogonalization algorithm to find orthonor-
mal eigenvectors. The N-point centered discrete Fourier
transform (CDFT) matrix WN is defined as a unitary ma-
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trix whose elements are,

(WN)n,m =
1√
N

exp
(
− j

2π
N

(n− c)(m− c)
)

,

n,m = 0,1, ...,N−1; c =
N−1

2
. (1)

If the Fourier transform of f (u) is F(u), then Fourier trans-
form of F(u) is f (−u). Applying the Fourier transform to
f (−u) yields F(−u). Finally, taking one more Fourier trans-
form will produce f (u) again. Analogous to its continuous
counterpart the CDFT matrix satisfies,

W4
N = IN . (2)

where IN is the identity matrix of order N. As four con-
secutive DFT operations correspond to the identity trans-
form, the CDFT matrix has four distinct eigenvalues λ ∈
{1,− j,−1, j} [13]. The DFT matrix is a symmetric Hermi-
tian matrix. Thus, using the eigenvalue decomposition, WN
can be written in the form of

WN = UNΛNUT
N (3)

where, (.)T is the transpose operator, U is the real Her-
mite eigenvectors of the CDFT matrix and Λ is the diago-
nal matrix containing the corresponding eigenvalues. As the
continuous-time FrFT is a generalization of the Fourier trans-
form (FT) with an order parameter a, a ∈ [0, 4], we gener-
alize the eigenvalue-decomposition-type FT expression into
discrete FrFT by taking the ath fractional power of WN ma-
trix. We form the centered discrete FrFT (CDFrFT) matrix
and use it in the chirp-rate estimation application.

2. PRELIMINARIES

We define the continuous FrFT and give some of its proper-
ties in the following.

Definition: The ath-order continuous FrFT is defined as
a linear operator acting on an integrable function f (u) for
0 < a < 4:

fa(u′) =
√

1− j cot(α)
∫ ∞

−∞
f (u)exp

(
iπ

(
cot(α)u2

−2csc(α)uu′+ cot(α)u′2
))

du, (4)

where α = aπ/2 is the transformation angle. The continuous
FrFT kernel turns into the ordinary continuous FT kernel for
α = π/2. For α = 0, the kernel is the identity operator.
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Properties of the FrFT: The continuous FrFT is a unitary
transform that satisfies index additivity property. Consecu-
tive FrFT of a function f with F a1 [F a2 [...F ak ]...]]( f )(u)
is equal to taking only one FrFT of the function with order
F a1+a2+...+ak( f )(u).

One of the most important features of the continuous
FrFT is the rotation property in time-frequency axis. The
FrFT rotates the time-frequency axis with an angle propor-
tional to the FrFT order. The rotation angle is α = aπ/2,
where a is the FrFT order. This property can be thought as
rotating the axis of Wigner distribution (WD) Wf (u,u′) of
f (u) counter-clockwise,

Wfa(u,u′) = Wf (ucosα−u′ sinα,usinα +u′cosα) (5)

where Wfa is the WD of the ath-order FrFT of f (u).
The squared magnitude of fa(u) is equal to the integral

projection of the WD of f (u) onto the axis making angle α
with the u-axis. Let Rα be the integral projection (or the
Radon transform) operator, which takes the integral projec-
tion of W (u,u′) onto the rotated axis making angle α with
the u-axis. It is possible to express

Rα(Wf (u,u′)) = | fa(u)|2. (6)

When a = 1, the Radon transform by the angle α = π/2 gives
us the squared magnitude of the FT of the signal.

As FrFT reduces to the ordinary FT when a = 1, the
DFrFT matrix of order a = 1 should reduce to the ordinary
DFT matrix in the discrete case. The DFrFT is desired to
mimic at least unitary, index additivity and rotation proper-
ties by approximating the samples of the continuous FrFT.

3. EIGENANALYSIS OF THE CDFT MATRIX

The DFT maps the samples of f [n], n = 1,2, ...,N − 1 to
[0, 2π] discrete frequency space with an interval 2π/N,
whereas the CDFT maps to [−π , π] space assuming
n =−(N−1)/2, ...,(N−1)/2. Therefore, contrary to the
DFT, the CDFT allows to define even and odd functions,
i.e, Hermite-Gauss functions that are eigenfunctions of the
continuous FrFT. In order to approximate the samples of the
continuous FrFT and to imply the rotation property, Hermite-
Gauss eigenvectors of the DFT matrix has to be obtained.
The reason we have used the CDFT matrix instead of the or-
dinary DFT matrix is that, the Hermite-Gauss functions are
eigenvectors of only the CDFT matrix, not the DFT matrix.
In the eigenanalysis of the CDFT matrix, let us determine
the matrices that include the eigenvectors of WN explicitly
by the following theorem.

Theorem: The Hermite-Gauss-like eigenvector matrices
of the CDFT matrix is,

V1 =
1
2

(
ℜ{WN}+(ℜ{WN})2) (7a)

V2 =
1
2

(
ℜ{WN}− (ℜ{WN})2) (7b)

V3 =
1
2

(
ℑ{WN}+(ℑ{WN})2) (7c)

V4 =
1
2

(
ℑ{WN}− (ℑ{WN})2) (7d)

where, V1, V2, V3, and V4 are eigenvectors associated with
eigenvalues 1, −1, j, and − j, respectively. ℜ and ℑ denote

the real and imaginary parts, and WN is the CDFT matrix as
defined in (1).

Proof : Re-arranging (2) as W4
N − IN = 0 and rewriting

it in its factored form as

(WN − IN)(WN + IN)(WN − jIN)(WN + jIN) = 0 (8)

leads us to a very important result when rewritten in four
different eigenequation forms for the DFT as stated earlier
by Bose [13]. As for the eigenvalues associated with λ = 1,
we obtain

(WN − IN)(W3
N +W2

N +WN + IN) = 0 (9)

with the corresponding eigenvector,

V1 = (W3
N +W2

N +WN + IN) (10a)

which satisfies WNV1 = V1. The other eigenvectors can be
obtained in the same manner,

V2 = (W3
N −W2

N +WN − IN) (10b)

V3 = (W3
N + jW2

N −WN − jIN) (10c)

V4 = (W3
N − jW2

N −WN + jIN) (10d)

The eigenvectors are obtained by summing four unitary ma-
trices and therefore they have eigenvalues of modulus 4.
Note that V1 and V2 are pure real and V3 and V4 are
pure imaginary, since W3

N +WN and W2
N are pure real and

W3
N −WN is pure imaginary

WN
3 +WN = 2ℜ{WN} (11a)

WN
3−WN =−2 jℑ{WN} (11b)

WN
2 + IN = 2(ℜ{WN})2 (11c)

WN
2− IN =−2(ℑ{WN})2. (11d)

Substituting appropriate terms in (10) with (11), we obtain

V1 = 2
(
ℜ{WN}+(ℜ{WN})2) , (12a)

V2 = 2
(
ℜ{WN}− (ℜ{WN})2) , (12b)

V3 =−2 j
(
ℑ{WN}+(ℑ{WN})2) , (12c)

V4 =−2 j
(
ℑ{WN}− (ℑ{WN})2) . (12d)

These equations do not satisfy (3), since Hermite-like eigen-
vectors have to be real and unitary. In order to obtain real
and unitary eigenvectors, we divide V1 and V2 by 4, and V3
and V4 by−4 j, since these eigenvectors have eigenvalues of
modulus 4. The proof is complete.

Notice that all Vi, i = 1,2,3,4 are commuting with the
CDFT matrix and therefore have the eigenvectors divided
into four multiplicities. The acquired eigenvectors Vi, are
employed in the calculation of the DFrFT matrix, in the fol-
lowing section.

4. OBTAINING CENTERED-DFRFT MATRIX

The FrFT operator of order a can be defined as the ath power
of the ordinary DFT operator WN . Hence, the DFrFT matrix
can be expressed by

Wa
N = UNΛa

NUT
N (13)
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Table 1: Multiplicities of the eigenvalues of the N×N CDFT
matrix [12].

N 1 j -1 j
4m m m m m

4m+1 m+1 m m m
4m+2 m+1 m+1 m m
4m+3 m+1 m+1 m+1 m

where Λa
N is explicitly [12],

Λa
N = diag(e− j0,e− j π

2 a, . . . ,e− j π
2 a(N−2),e− j π

2 a(N−1)) (14)

The multiplicities of the eigenvalues of the CDFT matrix are
given in Table 1.

The columns of the matrices stated in (7) are not lin-
early independent, since they are not full rank. An easy
and quick way to obtain the linearly independent and or-
thonormal columns of them is to compute the reduced eche-
lon form of these matrices, pick only the columns associated
with the pivots and employ an orthogonalization algorithm,
i.e., Gram-Schmidt orthogonalization (GSO) algorithm.

We have employed Gauss-Jordan elimination method to
find the pivots and chosen the linearly independent columns,
therefore throwing away some columns for each Vi, i =
{1,2,3,4}. Then, we have employed the celebrated modi-
fied GSO (m-GSO) [14] algorithm to obtain the normalized
linearly independent orthonormal eigenvectors.

Recall that the reason of employing CDFT matrix is
that, discrete Hermite-Gauss functions are eigenvectors of
the CDFT matrix, but the eigenvectors of DFT matrix is
phase-shifted version of the discrete Hermite-Gauss func-
tions. Applying the same method directly to the DFT ma-
trix will produce incorrect results. When a discrete Hermite
function is transformed using the DFT matrix, the result is
not a discrete Hermite function, rather it is a shifted version
of the Hermite function modulated by a complex sinusoidal.

4.1 Modified Gram-Schmidt Algorithm
The Hermite-like orthogonal CDFT eigenvectors can be ob-
tained by employing the m-GSO. Let
• y: non-orthonormal columns of Vi after Gauss-Jordan

elimination. (There are ki columns for each Vi.)
• v̄: orthonormal columns obtained by m-GSO
• ki: number of pivots in Vi,

then for each Vi the algorithm is summarized as follows.
for n = 1 to ki

for m = 1 to n

yn = yn− < ym,yn >

< ym,ym >
ym

end

v̄n =
yn

||yn||
end

where < . > is an inner product. The m-GSO algorithm nor-
malizes any set of vectors by using projection and subtrac-
tion. In the end, normalization operators make the orthonor-
mal components remain only. In the first step, a vector is

taken and the projections of the remaining vectors are sub-
tracted from the vector, following a normalization step. The
process is completed when this operation is carried for all
vectors.

4.2 The Centered-DFrFT Matrix
Let V̄i, i = 1,2,3,4 be the new linearly independent or-
thonormal eigenvector set after m-GSO algorithm. The size
of the new eigenvectors V̄i is N× ki, where ki is the rank of
Vi, which is already at hand after Gauss-Jordan elimination
process. ki can also be calculated by referring to the multi-
plicities of eigenvalues, which is shown in Table 1.

The ordinary CDFT matrix can be obtained by calculat-
ing the sum of four eigenvalue decompositions of V̄i matri-
ces associated with the eigenvalues,

WN = V̄1Ik1V̄
T
1 + V̄2(−Ik2)V̄

T
2

+ V̄3( jIk3)V̄
T
3 + V̄4(− jIk4)V̄

T
4 (15)

where Iki is ki × ki identity matrix. Actually, λIki can be
written explicitly for λ = {1,−1, j,− j},

Ik1 = diag(e− j2π(k1−1), ...,e− j2π ,e− j0)

−Ik2 = diag(e− jπ+2π(k2−1), ...,e− j3π ,e− jπ)

jIk3 = diag(e− j3π/2+2π(k3−1), ...,e− j7π/2,e− j3π/2) (16)

− jIk4 = diag(e− jπ/2+2π(k4−1), ...,e− j5π/2,e− jπ/2).

Iki is sorted in a different way compared to (14). The rea-
son of sorting the eigenvalues in the reverse order is con-
cerned with the zero-crossings of the corresponding eigen-
vectors, which are related to the order of Hermite-type func-
tions. There are n zero-crossings in a Hermite function of or-
der n. Since the zero-crossings in the CDFT matrix is sorted
in the order of high to low, e.g. there are no zero-crossings
in the middle and there are N− 1 zero crossings in the first
column, we also sort the eigenvalues in the reverse order.

The DFrFT matrix can be obtained by combining (13),
(10), and (16) as,

Wa
N = V̄1Λ̄a

k1
V̄T

1 + V̄2Λ̄a
k2
V̄T

2

+ V̄3Λ̄a
k3
V̄T

3 + V̄4Λ̄a
k4
V̄T

4 (17)

where,

Λ̄a
k1

= diag
(

e− j2π(k1−1)a, . . . ,e− j2πa,e− j0
)

Λ̄a
k2

= diag
(

e− j(π+(k−1−1)2π)a, . . . ,e− j3πa,e− jπa
)

(18)

Λ̄a
k3

= diag
(

e− j( 3π
2 +(k j−1)2π)a, . . . ,e− j 7π

2 a,e− j 3π
2 a

)

Λ̄a
k4

= diag
(

e− j( π
2 +(k− j−1)2π)a, . . . ,e− j 5π

2 a,e− j π
2 a

)
.

As V̄i are orthonormal to each other, (17) implies that the
index additivity rule is supported, since it can easily be
shown that, Wa1

N Wa2
N = Wa1+a2

N . In Section 5, the proposed
method is tested on two different scenarios. The aim of the
first scenario is to test whether the proposed CDFrFT approx-
imates the samples of its continuous counterpart. The second
scenario is to justify the rotation property of the CDFrFT.

1366



Figure 1: CDFrFT of a discrete rectangular function by the
proposed method. x[n] = 1 for −6 ≤ n ≤ 6, and x(n) = 0
otherwise. Solid: real part, dashed: imaginary part.

Figure 2: Samples of continuous FrFT of the discrete rectan-
gular function given in Fig. 1.

5. SIMULATIONS AND THE APPLICATION OF
CENTERED-DFRFT

In the first scenario, a discrete square function x[n] of length
N = 73 is generated, where x[n] = 1 for −6 ≤ 0 ≤ 6 and
x[n] = 0 otherwise. The simulation results by the proposed
CDFrFT method for various orders are shown in Fig. 1.
Fig. 2 shows the samples of the continuous FrFT for the same
orders. By comparing the results, it is clear that our proposed
method successfully approximates the samples of its contin-
uous counterpart.

Figure 3: (a) An LFM signal with chirp rate β = 0.1, (b)
its WD, (c) proposed ath-order CDFrFT of the signal, (d) its
WD, (e) ath-order FrFT of the signal, and (f) its WD. Solid:
real part, dashed: imaginary part.

Figure 4: (a) Maximum magnitude of transformed chirp-type
signal by CDFrFT with respect to transform order. (b) Bx,a
versus FrFT order.

The second scenario presents the rotation property of the
CDFrFT. A linear frequency modulated (LFM) signal y[n]
with a chirp rate of β = 0.1 is generated with length N = 73,

y[n] = G[n]exp
(

jβn2)

where G[n] is the Gaussian envelope of the signal. Fig. 3.(a)
presents real and imaginary parts of the signal. WD of the
signal is shown in the Fig. 3.(b). The signal is transformed
using the proposed CDFrFT with a transform order a = 0.75,
which is shown in Fig. 3.(c). WD of the obtained signal is
in Fig. 3.(d). The samples of the continuous FrFT is plotted
in Fig. 3.(e) and its WD is shown in Fig. 3.(f). Compared
to the samples of the continuous FrFT, it is obvious that the
proposed CDFrFT rotates the axes of the WD successfully
by approximating the samples.

As a consequence, our proposed DFrFT has following
properties,
• Unitarity. Since the eigenvectors are orthonormal due to

the Gram-Schmidt orthogonalization process,
• Index additivity, (see (17), (18)),
• Approximating the samples of the continuous FrFT,
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• Reducing to the ordinary DFT when the order a = 1,
• Rotating the time-frequency axis by angle α = aπ/2,
• Invertability. Inverse transform of a transformed signal

gives exactly the original signal.

5.1 Chirp Rate Estimation by Maximizing the FrFT
Magnitude
We have used the CDFrFT to estimate the rate of a chirp
signal. For this purpose, a chirp signal is generated with a
chirp rate of β0 = 0.5. FrFT of the chirp signal gives a dirac-
delta-type output at its optimum transform order a = 1 + β0
and reaches to a maximum magnitude. Hence, chirp rate of
an LFM-type discrete signal z[n] can be estimated by,

â = max
a
{sup(|Wa

N .z|)} .

Here, sup(.) determines the peak value of each CDFrFT mag-
nitude and â corresponds to the maximum of their suprema.
Fig. 4 plots the maximum magnitude versus CDFrFT order
a. It is apparent that the proposed CDFrFT gives a peak at the
optimum transform order near â = 1.5. The estimated chirp
rate is found to be 1.507 and the error is 7e− 3. The chirp
rate estimate β̂0 = â− 1 is successfully found with a small
error rate.

5.2 Chirp Rate Estimation by Fractional Bandwidth Ex-
trema
Frequency-domain bandwidth Bx of a signal x(t) is defined
as,

Bx =

[∫
( f −η f )2|X( f )|2]d f

||x|| , η f =
∫

f |X( f )|2d f
||x||2 .

where X(f) is the FT of x(t) and ||.|| is the norm operator. We
define the fractional bandwidth of a signal

Bx,a =

[∫
(u−ηu,a)2|xa(u)|2]du

||x|| , ηu,a =
∫

u|xa(u)|2du
||x||2 .

Without losing generality, if we take the sampling interval
Ts = 1, the discrete fractional bandwidth B̃x,a of a discrete
signal x[n] can be defined by,

B̃x,a =

[
∑(n− η̃n,a)2|xa[n]|2]

||x|| , η̃n,a = ∑n|xa[n]|2
||x||2 .

Another method for chirp-rate estimation problem is to find
the order that maximizes the fractional bandwidth B̃x,a of the
signal, since a chirp signal is transformed into a sinusoidal at
the appropriate FrFT order. The order, which minimizes the
bandwidth will maximize the time-width, therefore the order
can also be found by maximizing the time-bandwidth ratio.
Estimate of the chirp rate can be written as β̂ = maxa{B̃x,a},
or â = mina{B̃x,a}, where â = 1+ β̂ . To minimize the error,
mean of the two estimates can be written as,

ˆ̄β =
(

max
a
{B̃x,a}+min

a
{B̃x,a}−1

)
/2

Fig. 4.(b) shows how minimum and maximum fractional
bandwidths that are calculated with the CDFrFT are related
to chirp-rate. We have found the estimate ˆ̄β as 1.5069, with
an error of 6.9e−3.

6. CONCLUSIONS
In this work, we have introduced a novel CDFrFT matrix
based on a simple and straightforward deduction of eigen-
vectors from CDFT. The proposed method exhibits high de-
gree of similarity with the properties of the continuous FrFT,
such as approximating the samples of the continuous FrFT,
reduction to the ordinary CDFT when the transform order
a = 1, maintaining index additivity rule, being unitary, and
possessing rotation property. Simulations and an application
on LFM signal parameter estimation problem present that the
proposed CDFrFT is a powerful tool for discrete FrFT com-
putation purposes. Future work on this subject may include
computation of discrete FrFT based on DFT matrix using ap-
propriate shifting operators in time/frequency and fast com-
putation methods of the proposed transform.
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