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ABSTRACT 

In this paper, phase shift keying – trellis coded modulation  

(PSK-TCM) schemes are designed using recursive system-

atic convolutional (RSC) encoders over Galois field GF(2
N
). 

These encoders are designed using the nonlinear left-

circulate (LCIRC) function. The LCIRC function performs a 

bit left circulation over the representation word. Different 

encoding rates are obtained for these encoders when using 

different representation wordlengths at the input and the 

output, denoted as Nin and N, respectively. A generalized 1-

delay GF(2
N
) RSC encoder scheme using LCIRC is pro-

posed for performance analysis and optimization, for any 

possible encoding rate, Nin/N. The minimum Euclidian dis-

tance is estimated for these PSK-TCM schemes and a gen-

eral expression is found as a function of the wordlengths Nin 

and N. The symbol error rate (SER) is estimated by simula-

tion for PSK-TCM transmissions over an additive white 

Gaussian noise (AWGN) channel. 

1. INTRODUCTION 

The nonlinear functions were used lately in chaotic se-
quence generators to increase the security of communica-
tions systems.  
In [1], Frey proposed a chaotic digital infinite impulse re-
sponse (IIR) filter for a secure communications system. The 
Frey filter contains a nonlinear function named left-circulate 
function (LCIRC), which provides the chaotic properties of 
the filter. In [2], Werter improved this encoder in order to 
increase the randomness between the output sequence sam-
ples. The performances of a pulse amplitude modulation 
(PAM) communication system using the Frey encoder, with 
additive white gaussian noise (AWGN) were analyzed in 
[3], by means of simulations. All previously mentioned pa-
pers considered the Frey encoder as a digital filter, operating 
over Galois field GF(2N). Barbulescu and Guidi made one of 
the first approaches regarding the possible use of the Frey 

encoder in a turbo-coded communication system [4]. Zhou 
et al. did a similar analysis in [5], and as in [4], the paper 
lacks of proof for the stated performance enhancement.  
In [7] it was demonstrated that the Frey encoder with finite 
precision (wordlength of N bits) presented in [1] is a recur-
sive systematic convolutional (RSC) encoder operating over 
GF(2N). In [8], a new method is proposed for enhancing the 
performances of the chaotic PAM – trellis-coded modulation 
(PAM-TCM) transmission over a noisy channel. These en-
coders follow partially the rules proposed by Ungerboeck in 
[6] for defining optimum trellis-coded modulations by 
proper set partitioning. Two-dimensional (2D) TCM 
schemes using a different trellis optimization method for 
Frey encoder was proposed in [9]. 
In the present paper, a generalization of the optimum one-
delay GF(4) encoder in [7] is performed, for any output 
wordlength N and for any possible encoding rate in phase 
shift keying TCM (PSK-TCM) schemes. 
The paper is organized as follows. Section 2 is presenting 
the LCIRC function definition and properties over GF(2N), 
and its use for designing a rate 1 GF(4) RSC encoder with 
LCIRC for a QPSK-TCM transmission. The trellis optimiza-
tion method is presented in Section 3, first for a particular 
case, and then, for any output wordlength N. Therefore, in 
Section 3, a generalized optimum GF(2N) RSC encoder 
scheme is proposed and an expression is provided for the 
minimum Euclidian distance of these encoders in a PSK-
TCM transmission. The simulated symbol error rate (SER) 
performance is plotted in Section 4 for the optimum PSK-
TCM transmissions. Finally, the conclusions are drawn and 
some perspectives are presented in Section 5. 

2. DESIGN OF PSK-TCM SCHEMES WITH 

GF(2
N
) RSC ENCODERS USING LCIRC 

2.1 Nonlinear LCIRC Function over GF(2
N
) 

The main component of the chaotic encoder introduced by 
Frey in [1] and the RSC encoder presented in [7] is the 
nonlinear LCIRC function. This function is determining 
both the chaotic properties of the encoder in [1] and the trel-
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lis performances in [7], [8], and [9]. The definition of this 
nonlinear function operating over finite sets and some of its 
properties will be presented in the sequel.  
Let us denote by N the wordlength used for binary represen-
tation of each sample. The LCIRC function is used as a typi-
cal basic accumulator operation in microprocessors and per-
forms a bit rotation by placing the most significant bit to the 
less significant bit, and shifting the other N-1 bits one posi-
tion to a higher significance. This is the reason why the 
function is named left-circulate. 
Considering the unsigned modulo-2N operations for any 
sample moment n, the LCIRC consists in a modulo-2N mul-
tiplication by 2 that is modulo-2N added to the carry bit, and 
is given by the expression: 
 

NUUU
nsnxnxLCIRCny 2mod])[][2(])[(][ +⋅== ,      (1) 

 
where the superscript U denotes that all the samples are rep-
resented in unsigned N bits wordlength, i.e. xU[n], yU[n] ∈ 
[0, 2N-1], and the carry bit s[n] is estimated as following: 
 







−≤≤

−≤≤
=

−

−

12][2    if,1

12][0    if,0
][

1

1

NUN

NU

nx

nx
ns . (2) 

 
We can note from (2) that besides the nonlinearity in the 
modulo-2N multiplications and additions, the carry bit s[n] is 
determining the nonlinearity of the LCIRC function. 
Applying N times consecutively the LCIRC function to an N 
bits wordlength unsigned value x

U, it results the original 
value: 
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An example of a GF(4) RSC encoder using LCIRC function 
for a QPSK-TCM scheme is presented in the next section. 

 
2.2 Rate 1 GF(4) RSC Encoder with LCIRC for a 

QPSK-TCM transmission 

Let us consider a RSC encoder working over GF(4) using 
the LCIRC function. This scheme is presented in Fig. 1. 
Here, all the values are represented in the unsigned form. 
Let us assume that N denotes the wordlength used for binary 
representation of each sample. This encoder is composed by 
one delay element with a sample interval, two modulo-2N 
adders, and a LCIRC block. For each moment n, u[n] repre-
sents the input data sample, x[n] denotes the delay output or 
the encoder current state, and e[n] is the output sample.  
The encoding rate for the encoder in Fig. 1 is the ratio be-
tween the input wordlength Nin and the output wordlength 
N=Nout [7] [8], i.e., R = 1, because Nin = Nout = 2. 
The trellis for the encoder in Fig. 1 is presented in Fig. 2 and 
does not follow the Ungerboeck rules [6], [7], [8]. This trel-
lis has four states because the sample determining the en-
coder state takes four values, i.e., xU[n]∈{0, 1, 2, 3}.  
In Fig. 2, four different lines are used for representing the 
transitions corresponding to the input sample uU[n]. 

 

Figure 1 – Rate 1 GF(4) nonlinear encoder for 2 b/s/Hz. 

 

 

Figure 2 – Trellis for rate 1 GF(4) nonlinear encoder (2 b/s/Hz). 

 

Figure 3 – Phase constellation for QPSK-TCM. 

Each transition in Fig. 1 is associated to an unsigned output 
value eU[n]∈{0, 1, 2, 3}. For each originating state, the val-
ues in the box, from left to right, are associated to the transi-
tions in the descending order. 
Mapping an unsigned output symbol value e

U[n] into an 
instant carrier phase value φe[n] over the n-th sample inter-
val, a 2N levels PSK-TCM scheme is obtained. A simple 
phase mapping is given by: 
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The phase constellation for the QPSK-TCM scheme using 
the encoder in Fig. 1 and the mapping in (4) is represented 
in Fig. 3. 
For the M-PSK signal, we can write the following expres-
sions of the Euclidian distances between the constellation 
points in the ascending order: 
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Figure 4 – Rate 1/2 optimum GF(4) RSC-LCIRC encoder for 1 
b/s/Hz. 

 

 

Figure 5 – Trellis for rate 1/2 optimum GF(4) RSC-LCIRC encoder 
(1 b/s/Hz). 

 
where M denotes the number of phase levels. Considering 
the mapping in (4) and the distances’ expressions in (5), it 
results that the QPSK-TCM signal trellis in Fig. 3 presents a 
minimum Euclidian distance of d2

E, N=2, R=1, QPSK = 2·∆0
2 = ∆1

2 
= 4, offering no coding gain over the non-encoded binary 
PSK (BPSK) signal. 

3. OPTIMUM PSK-TCM SCHEMES WITH GF(2
N
) 

RSC ENCODERS USING LCIRC 

3.1 Rate 1/2 Optimum GF(4) RSC LCIRC Encoder for 

a QPSK-TCM transmission 

In this section, the potential of the nonlinear LCIRC func-
tion is showed, for designing efficient encoders.  
Therefore, following the trellis optimization presented in [7] 
and [9], a simple nonlinear encoder operating over GF(4) 
was developed, which has a binary input. It is demonstrated 
that this encoder performs identically to an optimum rate 1/2 
binary field RSC convolutional encoder. Both encoders offer 
maximum coding gain for 1 b/s/Hz [6], [7]. The scheme of 
the rate 1/2 optimum GF(4) encoder is presented in Fig. 4. 
Here, the time variable is neglected and all the values are 
represented in the unsigned form.  
The trellis for the encoder in Fig. 4 is presented in Fig. 5 and 
follows all the Ungerboeck rules.  
Considering the mapping in (4), the QPSK-TCM signal trel-
lis in Fig. 5 presents a minimum Euclidian distance of 
d

2
E,R=1/2,opt.,u

U
∈{0,2},QPSK = 2· ∆1

2 + ∆0
2 = ∆1

2 = 10 for a spectral 
efficiency of 1b/s/Hz. Hence, this rate 1/2 code for 1b/s/Hz 
QPSK-TCM transmission is offering a coding gain of 
10log10(2.5) 

≈ 4 dB over the rate 1 QPSK-TCM in Section 
2.2. 

 
 

 
Figure 6 – Rate Nin/N optimum GF(2N) RSC LCIRC encoder for Nin 
b/s/Hz. 
 

 
 

3.2 Generalized Optimum RSC LCIRC Encoder for a 

PSK-TCM transmission 

Following the same design procedures as in Section 3.1, we 
can design optimum RSC encoders using LCIRC function, 
for any output wordlength N. In fact, for a fixed output 
wordlength N, an optimum RSC encoder will be determined 
for each input wordlength Nin ∈{1, 2, …, N-1}, for which 
the encoding rate is R = {1/N, 2/N, …, (N – 1)/N}.  
The general block scheme for a rate Nin/N optimum PSK-
TCM encoder, Nin ∈{1, 2, …, N-1} using one delay element 
and the LCIRC function is presented in Fig. 6. LCIRCNin 
represents the LCIRC function application for Nin times con-
secutively, as it was defined in (3). Both adders and the mul-
tiplier are modulo-2N operators.  
The trellis complexity of the codes generated with the 
scheme in Fig. 6 increases with the wordlength, because the 
number of trellis states grows exponentially with the output 
wordlength, i.e., 22N, while the number of transitions origi-
nating from and ending in the same state grows exponen-
tially with the input wordlength, i.e., inN22 .  
It can be easily demonstrated that the minimum Euclidian 
distance for the encoder in Fig. 6 has the following expres-
sion: 
 













=∆+∆









−+−∈∆+∆

=

−

−

=
−

−=

−

−

− ∑

2
for,)()(2

1...,,1
2

,1
2

...,,1for,)()(2

2
0

2
12

22

0

22
12

2
PSK2,/,

N
N

N
NN

N

d

in

in

i

i

NNRE

inNN

inNN

inNN

N

in

. (6) 

 
For example, let us consider the optimum encoders for the 
output wordlength equal to 3, i.e., N=3. The input 
wordlength may take three values Nin ∈{1, 2}, and the cor-
responding encoding rates are R ∈ {1/3, 2/3}. For the rate 
1/3 encoder the scheme in Fig. 6 is set with all the values 
corresponding to Nin=1. From (5) and (6) results that the 
minimum distance of this code is d2

E, R=1/3, opt., 8-PSK, u
U

∈{0,4} = 

TABLE 1 
MINIMUM PSK-TCM DISTANCES AS FUNCTION OF N AND NIN FOR 

OPTIMUM GF(2N) RSC-LCIRC ENCODERS 
 

N Nin R 
2
Ed  

1 1 1 8 
2 1 1/2 10 
2 2 1 4 
3 1 1/3 14 
3 2 2/3 4 + 4 · sin2(π/8) ≈ 4.5858 
3 3 1 8 · sin2(π/8) ≈ 1.1716 
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14, having a coding gain of 10·log10(d2
E, R=1/3, opt., 8-PSK, 

u
U

∈{0,4} / d
2
E,R=1,N=3, opt., 8-PSK) = 10·log10(14/1.1716) ≈ 10.77 

dB over the optimum 8PSK (N=3) using a rate 1 encoder. 
For the rate 2/3 encoder (Nin=2) the minimum distance of 
this code is d2

E, R=2/3, opt., 8-PSK, u
U

∈{0,2,4,6} = 4 + 4 · sin2(π/8) ≈ 
4.5858, having a coding gain of  approximately 5.93 dB 
over the optimum 8PSK (N=3) using a rate 1 encoder. The 
rate 1 optimum encoder is obtained for Nin = N, for any 
value of N, considering that 

UUNU xxLCIRCxLCIRC == )()(0  assumes no bit circula-

tion. This rate 1 optimum encoder offers a minimum dis-
tance of d2

E, R=1, opt. N=3, opt., 8-PSK = 8 · sin2(π/8) ≈ 1.1716. 
In Table 1 there are presented a few values of the minimum 
distances of the encoder in Fig. 6 for different values of Nin 
and N. The resulted coding rates are presented in the third 
column. Analyzing the values in Table 1 it can be noted that 
the minimum distance of a code decreases when its coding 
rate increases, for any value of N. This fact is well known, 
i.e., the code performances decrease with the rate increases. 
Unfortunately, these performances are related to the spectral 
efficiency of these PSK transmissions. For the codes pre-
sented in Table 1, having the encoder structure in Fig. 6, the 
spectral efficiency for the PSK transmission is equal to the 
input wordlength Nin. Hence, the code performances in-
crease is paid by a spectral efficiency decrease.  

It can be easily noticed that all the rate (N – 1)/N, for any N 
value, the optimum RSC LCIRC encoders are offering the 
same minimum distance as the corresponding binary opti-
mum encoders determined by Ungerboeck in [6]. However, 
the GF(2N) optimum RSC LCIRC encoders are less complex 
than the corresponding binary encoders. The memory size of 
the binary encoders increases logarithmically with the num-
ber of states in the trellis, while the GF(2N) optimum RSC 
LCIRC encoders include only one delay element, no matter 
what is the trellis complexity. 
All TCM schemes presented above were using PSK modula-
tion. Even if PSK is used in practice only for small spectral 
efficiencies, i.e., up to 3b/s/Hz, optimum RSC LCIRC en-
coders can be designed for any spectral efficiency value, 
using the scheme in Fig. 6 with minimum distances given by 
(5) and (6). 

4. SIMULATIONS RESULTS 

The PSK-TCM schemes presented in Section 2 and Section 
3 using all optimum encoders in Table 1 were considered for 
simulations. The SER performances for these encoding 
schemes using multilevel PSK signals and Viterbi decoding 
were analyzed in the presence of AWGN. The SER is plot-
ted in Fig. 7 as a function of the SNR.  
The PSK-TCM schemes using rate 1 optimum nonlinear 
RSC encoders for the same spectral efficiencies as both op-
timum encoder PSK-TCM schemes for N=3, were consid-
ered for comparison. For example, the rate 1/3 encoder for 
N=3 is having the same spectral efficiency as the rate 1 en-
coder for N=1, i.e., 1b/s/Hz, and the rate 2/3 encoder for 
N=3 and the rate 1 encoder for N=2 have an efficiency of 
2b/s/Hz. These cases are considered in Fig. 7.  
 

 

Figure 7 – SER performance for PSK-TCM schemes using optimum 
GF(2N) nonlinear RSC encoders. 

 
Analyzing the SER curves it can be noticed that the rate 1/3 
encoder for N=3 performs better than the rate 1 encoder for 
N=1 by more than 3 dB (instead of a gain of approx. 2.43 
dB, in theory; see Table 1), and the rate 2/3 encoder for N=3 
performs better than the rate 1 encoder for N=2 by more 
than 3.8 dB (approx. 0.6 dB, in theory). The average multi-
plicity of error events with the minimum distance in (6), for 
optimum GF(2N) RSC encoders, is smaller than multiplicity 
of minimum distance error events for the rate 1 encoders, for 
all encoders with Nin < N. This is the reason why the simula-
tion results in Fig. 7 show larger coding gains between these 
two encoders for a given spectral efficiency.  

5. CONCLUSIONS AND PERSPECTIVES 

It was demonstrated that optimum RSC encoders over 
GF(2N) can be designed using the LCIRC function. A gener-
alized 1-delay GF(2N) RSC encoder scheme using LCIRC 
was defined, for any possible encoding rate. A general ex-
pression is found for the minimum Euclidian distance of 
PSK-TCM schemes using these optimum encoders. As ad-
vantage of this generalized encoder, we can mention its re-
duced complexity. Hence, using only one delay element and 
multiple bit circulations we designed encoders having com-
plex trellises and large Euclidian distances. In addition, it 
was shown that the nonlinear encoders offer the same per-
formances as conventional binary encoders.  
In perspective, we intend to apply the presented method to 
other nonlinear structures and develop efficient trellis-coded 
modulation systems using these encoders. In addition, we 
will address the performances evaluation for the proposed 
TCM schemes over fading channels. Considering the prop-
erties of the encoders presented in this paper, we also aim to 
analyze the turbo coding scheme with optimum RSC encod-
ers over GF(2N). 
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