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ABSTRACT 

A method to obtain large sets of periodic conjugate symmet-

ric sequences with perfect periodic autocorrelation func-

tions is presented. Each of these perfect sequences can be 

transformed into two real sequences which are perfectly 

orthogonal for any cyclic shift. In this way, mutually or-

thogonal complementary (MOC) sequences derived from 

bipolar Gold codes can be transformed into M-ary MOC 

Gold codes. Ternary MOC Gold codes are the simpler im-

plementation case and exist in large number. These Ternary 

MOC Gold codes provide a greater immunity to multi-path 

interferences than other codes, like Hadamard codes, Or-

thogonal Gold codes, Gold codes, and Complementary Go-

lay codes, when a periodic or aperiodic autocorrelation 

function is used for asynchronous bit detection. 

1. INTRODUCTION 

Ideally, direct sequence code division multiple access (DS-

CDMA) sequences should have a perfect periodic autocor-

relation function [1]-[4]. Some solutions may be found with 

complex sequences defined by some authors as Small or 

Large Alphabet Polyphase sequences [1], [5]-[7], Uni-

modular Perfect sequences [8], Phase Shift Pulse Codes [9], 

Perfect Root-of-Unity sequences [10], Bent Function se-

quences [11], or simply as Perfect sequences [12], [13]. 

A perfect sequence is, by definition, a complex sequence 

with perfect periodic autocorrelation function equal to the 

unit impulse function, ( )nδ . A variety of perfect sequences 

has been proposed in the literature [1]-[13]. The lower 

bound of the maximum absolute value of periodic cross-

correlation (MaxCC) is a constant and equals N  [7], 

[14], [15]. 

Complementary sequences have ideal autocorrelation and 

cross-correlation properties. It is for this reason that they 

are found in some applications, such as spectrometry, 

acoustics, radar, and CDMA communication systems, since 

early 1960. Golay introduced first the concept of comple-

mentary sequence pairs [16], when an ideal aperiodic auto-

correlation function is required. Generalized complemen-

tary sets and mutual orthogonality between complementary 

sets have been introduced by Tseng and Liu [17]. Suehiro 

and Hatori defined complete complementary sets generated 

through N-shift cross-orthogonal sequences [18]. The Poly-

phase complementary sequences [19], [20] were studied by 

Sivaswamy and Budisin. The Biphase scalable complete 

complementary sets of sequences [21] were proposed by X. 

Hang and Y. Li. 

Mutually orthogonal complementary sets are interesting for 

digital communications, offering important potential advan-

tages over traditional CDMA codes [5], [22]. For example, 

they can be useful to eliminate the inter symbol interference 

(ISI) and multiple access interference (MAI) in a direct 

sequence (DS) CDMA system [23], [24]. Such communica-

tion system scheme results in an easily parallelized receiver 

architecture that may be useful in nonfading coherent chan-

nels, such as the optical fiber channel or the Rician wireless 

channel with a strong line-of-sight component. Pairs of 

mutually orthogonal polyphase complementary sequences 

have also been proposed for use in ultrasound imaging [25]. 

Usually, mutually orthogonal complementary (MOC) se-

quences found in the literature are defined through the ape-

riodic autocorrelation function, and most of them derive 

from the Golay sequences. However, we prefer to identify 

new MOC sequences through the periodic autocorrelation 

function, and to simulate these new sequences in both peri-

odic and aperiodic cases. New pairs of MOC sequences can 

be derived from any complex periodic conjugate symmetric 

sequences. For example, our MOC sequences can be de-

rived from perfect sequences of Gold codes, and can be 

seen as a special family of Generalized Mutually Orthogonal 

Complementary Signals [26]. Our MOC Gold codes may be 

integrated into a multicarrier code division multiple access 

(MC-CDMA) system. These systems are a promising choice 

for enhanced quality of service and, especially, for increased 

transmission rate [26]. 

The next section presents a mathematical property that can 

be used to find perfect sequences that are periodic conju-

gate symmetric sequences. These perfect sequences can be 

transformed into MOC sequences. In section III, we present 

some simulation results obtained with the periodic and ape-

riodic autocorrelation functions for Gold codes, orthogonal 

Gold codes, MOC Gold codes, M-ary MOC Gold codes, 

and Complementary Golay codes, in the presence of addi-
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tive white Gaussian noise (AWGN) and Rayleigh flat fad-

ing. The main conclusions are gathered in section IV. 

2. MUTUALLY ORTHOGONAL 

COMPLEMENTARY SEQUENCES 

By definition, a pair of mutually orthogonal complementary 

sequences exists when the sum of the two periodic autocor-

relation functions is equal to ( )nδ  and the periodic cross-

correlation function is zero for any cyclic shift [17]. We 

consider the same MOC definition for both periodic and 

aperiodic cases. 

Let ( )x n , with 0,1,2..., 1n N= − , be one of the N points of 

a periodic sequence x . Its discrete Fourier transform (DFT) 

and its inverse discrete Fourier transform (IDFT) [27] are 

defined as: 

  ( ) ( )
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For convenience of notation, 
N

W  is defined as 

( )exp 2
N

W j Nπ= − , where 1j = − . 

Using the DFT and IDFT, the periodic cross-correlation 

between sequences x and y may be defined as [14], [27]: 
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where n  is an integer, the superscript * stands for the com-

plex conjugate, and mod(a,b) is the remainder of a divided 

by b. A complex value ( )x n  is equal to ( )mod ,x n N    

when x is a periodic sequence with period N. 

When x = y, (3) is defined as the periodic autocorrelation 

function. A sequence x is called a perfect sequence if it has 

an ideal periodic autocorrelation function: 
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As it is well known, any constant amplitude sequence de-

fined in the frequency domain corresponds to a perfect se-

quence in the time domain. In other words, it is possible to 

say that the sequence: 

  ( ) ( )px n IDFT x n=    , (5) 

for 0 1n N≤ ≤ − , where n  is an integer, is a perfect se-

quence if ( )x n  is a constant value for all N discrete values 

of n. 

Finally, we define a pair { }, ,
Re , Im

p i p i
x x        of real se-

quences identified by the subscript i, with 0 i Q< ≤ , where 

Q  is an integer. An interesting pair i is when ,Re p ix    and 

,Im p ix    are the real and imaginary parts of a complex 

perfect sequence [ ],p i i
x IDFT x= , with [ ]Re

i i
x x=  and 

2
i

x N=  for all N elements. 

 

Property: The IDFT of each sequence 

{ }0 1 2 1, ,..., ,..., ,i i Q Qx x x x x x− −∈  is a perfect periodic conju-

gate symmetric sequence if 
i

x  is a real sequence and 

( )i
x n  is a constant value (n, i and Q are integers and 

0 1n N≤ ≤ − ). All complex sequences ( )iIDFT x n   , of 

length N, can be decomposed into Q pairs of real se-

quences: 

  ( ) ( ){ },
Re Re

p i i
x n IDFT x n  =      (6) 

and 

  ( ) ( ){ },
Im Im

p i i
x n IDFT x n  =     , (7) 

which are orthogonal for any cyclic shift. 

 

By using (4) and (5), it is possible to generate any perfect 

sequence 
p

x  with length N  whenever sequence x lies on a 

constant magnitude circle, for example ( )x n N= , for 

0 1n N≤ ≤ − . 

Using the property of a periodic conjugate symmetric se-

quence [26], it is easy to find that: 

  ( ) ( )RepDFT x n x n  =     , (8) 

where ( ) ( ){ }Re
p

x n IDFT x n=    , as given in (6) and (7). 

The orthogonality of each pair of sequences (6) and (7) is 

confirmed by a null periodic cross correlation for any  value 

of n: 
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When (4) is verified, the periodic autocorrelation ( )x xp p
R n  

is a real sequence, because: 

( ) ( ) ( ) ( )
, Re ,Re Im ,Im

Re .
x xp p x x x xp p p p

R n R n R n N nδ
       
       

  = + =
 

, (10) 

( ) ( ) ( ), Im ,Re Re ,Im
Im 0

x xp p x x x xp p p p
R n R n R n

       
       

  = − =
 

. (11) 

All perfect sequences generated using the Property above 

are periodic conjugate symmetric sequences. This means, 

by definition, that ( ) ( )Re Rep px n x n   = −     and 

( ) ( )Im Imp px n x n   = − −    . Using these two expressions, 

it is possible to rewrite ( )
Re ,Imx xp p

R n
   
   

 and find that: 

  ( ) ( )
Re ,Im Im ,Rex x x xp p p p
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       
       

= − . (12) 

Replacing (12) into (11), ( )
, ,Re Im,

0
p i p ix x

R n
   
   

=  is ob-

tained and it is concluded that ,Re p ix    and ,Im p ix    

(pairs of no null sequences) are orthogonal for any cyclic 

shift (all time-shift values 0 1n N≤ ≤ − ). 
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All these good correlation properties have been confirmed 

by simulation, and some of the results obtained are dis-

cussed in the next section. 

3. SIMULATION RESULTS 

In order to evaluate their applicability in CDMA communi-

cation systems, mutually orthogonal complementary sets 

generated by applying an IDFT to 1N +  bipolar Gold se-

quences, with length N, have been analyzed. Notice that 

only one of the 2N +  sequences of the Gold set (one of the 

two m-sequences of the preferred pair) has been excluded. 

Good periodic and aperiodic autocorrelation properties 

(when N = 127) can be observed in figure 1 a) and b). 

As expected, the maximum out-of-phase periodic autocor-

relation value of 128 complex perfect sequences of the set 

{IDFT[128_Gold_Seq]} is a null value (figure 1 - a) when 

the Time-shift is not zero). However, the maximum out-of-

phase aperiodic autocorrelation value of 128 complex per-

fect sequences of the set {IDFT[128_Gold_Seq]} is less 

than 18% of its maximum autocorrelation value (figure 1 - 

b) when the Time-shift is not zero). This means that the new 

MOC sequences derived from a subset of Gold codes 

(MOC Gold codes) may be a good choice for asynchronous 

DS-CDMA scenarios, when a periodic or aperiodic auto-

correlation function is used for detection. 

For electronic implementation in synchronous or asynchro-

nous transmission scenarios, the MOC Gold codes should 

be converted into M-ary MOC Gold codes. The number of 

amplitude levels that should be used has been investigated, 

with the results presented in figure 2. This figure shows the 

MaxCC values normalized by the maximum autocorrelation 

value, for each pair of real sequences (6) and (7). M-ary 

MOC codes can be recorded in a read only memory 

(ROM), in order to simplify the electronic transmitter. The 

hardware of the CDMA receiver may also be simplified by 

using the same ROM and avoiding the use of a rake re-

ceiver (by using a single path receiver). 

According to figure 2, an analog-to-digital converter (ADC) 

with a resolution higher than 1 bit must be used. For this 

reason, different M-ary MOC Gold codes have been simu-

lated. In our following simulations, the bipolar MOC Gold 

codes (obtained with the signal function Sgn(.)) were dis-

carded, based on the results included in Table I for set A. 

For more than two amplitude levels, an ADC may be used 

to generate approximations of (6) and (7). Moreover, it has 

been observed that the aperiodic MaxCC value can be ap-

proximately four times lower than the values presented in 

figure 2, if only one pair is considered, i.e. if Q = 1. 

Most of the DS-CDMA comparative performance studies 

reported in the literature are limited to scenarios with only 

two users or with an infinite number of users. For compari-

son purposes, we have chosen the same scenario considered 

in [28], where Gold codes (with 31N = ) were used in a 

multiuser interference environment, with AWGN and 

Rayleigh flat fading. 

 

 

The received DS-CDMA signal, considering a Rayleigh flat 

fading channel and AWGN, may be expressed by: 

  ( ) ( ) ( ) ( )
1

.
Q

r

r

y t s t h t n t
=

= +∑ . (13) 

where ( )r
s t  is the signal of the user r, and ( )n t  is the 

AWGN. As it is well known, Rayleigh fading [29], [30] is a 

multiplicative distortion. For a flat fading channel, ( )h t  is 

modelled by a single tap with zero delay. Besides, ( )h t  is a 

wide-sense stationary (WSS) complex Gaussian process, 

with zero-mean and unit variance, whose amplitude varies 

according to a Rayleigh probability density function. The 

complex Gaussian samples generated for ( )h t  are shaped 

with a filter whose power spectral density function is given 

by: 
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where 
d

f  is the Doppler frequency. 

Our simulations were made with the best pair of each set. 

The code selection was made based on the maximum auto-

correlation value of all codes (after the process of quantifi-

cation of {IDFT[128_Gold_Seq]}). Figure 3 shows the Bit 

Error Rate (BER) results that we have obtained. 

 
a)   b) 

Figure 1 – a) Periodic autocorrelation functions of 128 complex 

perfect sequences of the set {IDFT[128_Gold_Seq]}, with null 

out-of-phase values. b) Aperiodic autocorrelation functions of 128 

complex perfect sequences of the set {IDFT[128_Gold_Seq]}. 

The length of all sequences is 127. 

Set Q In-phase MaxCC Out-of-phase MaxCC  

A 256 40,2% 45,7% 

B 256 16,5% 18,3% 

C 128 0,787% 8,9% 

D 128 <10-13 <10-13 

Table I - Simulation results for the normalized maximum absolute 

value of periodic cross-correlation (in phase “n = 0” and 

out-of-phase “n ≠ 0”) for 4 different sets of Q sequences with 

length N = 127 chips. The sets considered were: 

A. {Sgn(Re[IDFT[Gold]]) ∪ Sgn(Im[IDFT[Gold]])}; 

B. {Re[IDFT[Gold]] ∪ Im[IDFT[Gold]]}; 

C. {IDFT[Gold]}; 

D. {Re[IDFT[Gold]], Im[IDFT[Gold]]} between the se-

quences of each pair defined by (6) and (7). 
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A larger set of M-ary MOC Gold codes (union of different 

pairs) has been considered, for a DS-CDMA scenario with 

a Rayleigh flat fading channel. With this larger set, the 

BER performance of the M-ary MOC Gold codes is close 

to the performance with Gold codes. However, when only 

/ 2N  codes are considered, the M-ary MOC Gold codes 

are clearly better than Gold codes. Notice that M-ary MOC 

Gold codes have the same performance as MOC Gold 

codes, when 82M ≥  (ADC with 8 bits). 

 
All different pairs of codes (with equal average power) of 

figure 3 have been evaluated with a periodic autocorrelation 

function used for asynchronous detection (based on the 

maximum value). These new codes have also been evalu-

ated with an aperiodic autocorrelation function [31], with 

clearly better BER results, as may be observed in figure 4. 

The new codes seem to be better than Orthogonal Gold 

codes, Gold codes, and Complementary Golay codes, when 

a periodic or aperiodic autocorrelation function is used for 

asynchronous detection. The worst BER performance re-

sults were obtained with Hadamard codes (not represented). 

All our selected codes are real codes. Therefore, we chose 

to ignore complex codes such as Chu, Frank, or Zadoff-Chu 

perfect sequences in our simulations (which were made 

only with real codes). We have also performed preliminary 

simulations of asynchronous CDMA using our ternary 

MOC codes and a 9-ary quadrature amplitude modulation 

(with coherent detection), when only MAI is considered. 

With this specific CDMA scenario (and considering 

31N = ), we found that our ternary MOC codes can be bet-

ter than bipolar Gold codes (used with binary phase-shift 

keying and coherent detection). 

4. CONCLUSION 

We have shown that perfect periodic conjugate symmetric 

sequences can be obtained by applying an inverse discrete 

Fourier transform to any set of real bipolar sequences. Each 

of these perfect sequences can be transformed into pairs of 

mutually orthogonal real sequences (orthogonal for any 

cyclic shift value). Mutually orthogonal complementary 

sequences derived from bipolar Gold codes can be trans-

Figure 4 – Bit Error Rate (BER) versus Signal-to-Noise Ratio (S/N) 

with different sets of codes in a Rayleigh flat fading channel, for a 

two users asynchronous CDMA scenario. The detection was based 

on the maximum value of the aperiodic autocorrelation function. 

 

Figure 3 – Bit Error Rate (BER) versus Signal-to-Noise Ratio (S/N) 

with different sets of codes in a Rayleigh flat fading channel, for a 

two users asynchronous CDMA scenario. The detection was based 

on the maximum value of the periodic autocorrelation function. 

 

Figure 2 – Normalized periodic and aperiodic maximum absolute 

value of periodic cross-correlation between two sequences of each 

pair defined by (6) and (7). 
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formed into real M-ary codes that provide a greater immu-

nity to multi-path interference than other real codes, such as 

Hadamard codes, Orthogonal Gold codes, Gold codes, and 

Complementary Golay codes. Good BER performance with 

M-ary MOC Gold codes ( 3M ≥ ) has been found by simu-

lation of asynchronous DS-CDMA scenarios with a 

Rayleigh flat fading channel and AWGN. Ternary MOC 

Gold codes should be a better choice than Complementary 

Golay codes, when the periodic or aperiodic autocorrelation 

function is used for detection. 
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