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ABSTRACT 

This paper presents two fundamental enhancements in a 

hybrid audio/speech signal model based on AM/FM and 

transient representation: sinusoidal, transient, and noise 

(STN) components. The first enhancement involves a method 

of instantaneous sinusoidal parameters estimation using an 

adaptive filtering of the speech signal along its harmonic 

components. The second and perhaps more significant STN 

enhancement is concerned with transient components mod-

elling based on the matching pursuit with frame-based psy-

choacoustic optimized wavelet packet dictionary. It signifi-

cantly reduces the number of coefficients required to achieve 

a given perceptual distortion. 

1. INTRODUCTION 

The approach to lossy audio coding on the basis of transform 

and subband coding techniques has matured and is believed 

to show no significant progress in the near future. Therefore, 

other techniques are considered, especially parametric audio 

coding [1]. In this case, the audio is modeled by a limited 

number of objects, for instance by transients (short-lasting 

events), sinusoidal and noise components. The sinusoidal 

approach was first introduced in speech coding in the early 
eighties [2]. Whereas concurrent and state-of-the-art stand-

alone speech coders depend heavily on speech production 

models to realize low bit rates, modern applications ask for 

integrated audio and speech coding solutions. The sinusoidal 

model enables a unified approach to both audio and speech 

coding. In practice, sinusoidal model parameters are often 

considered as constants within an analysis frame (depending 

on the signal, the length of quasi-stationary segments can 

vary from a few milliseconds to several hundreds of ms). A 

fairly general model that is often used to represent speech 

and audio is based on AM/FM representation [3]. In this 

model, the signal is represented as a sum of sinusoidal com-
ponents with time-varying amplitude, phase and frequency, 

which are only slowly time-varying functions of time. The 

sinusoidal modelling approach is effective to represent the 

harmonic structure of many speech and audio segments. 

However, speech and audio signals often contain noise-like 

segments and transient sounds that are not efficiently mod-

elled by AM/FM representation. In particular, transient 

sounds can cause a type of distortion that is known as pre-

echo. Pre-echo originates from the fact that in order to reduce 

the number of modeling parameters, sinusoidal coders nor-

mally produce signals with a fairly high degree of pseudo-

stationarity. Thus, the sharpness of transient attack segments 
in fact is building up gradually before the attack. One of the 

most recent enhancements of the sinusoidal model is the in-

troduction of a new method that handles not only the har-

monic aspects of the signal but also its broadband and tran-

sient components. This new form of adaptive signal represen-

tation is called the sines+transients+noise (STN) model [3,4]. 

The time-scale and pitch-scale modifications become possi-

ble due to signal separation. The sinusoidal part can be 

stretched or shrunk in time domain without losing its pitch. 

The phase and amplitude values are easily interpolated at any 

given moments of time. The noise can be easily transformed 

in time domain with good results. The transients can also be 
time-rescaled while preserving their original temporal enve-

lopes. The SNT model is widely used in speech/audio 

processing applications because of these powerful features 

[1]. 

However, the crucial point in SNT systems design is analysis 

accuracy since it defines the overall performance of the sys-

tem. Every analysis technique that implemented in the sys-

tem should provide high accurate parameters estimation. The 

coordination of all analysis techniques should be carefully 

organized in order to get appropriate signal separation. 

The focus of this paper is application of new methods for 
sinusoids and transients selection in hybrid (STN) modeling 

of audio/speech. 

2. GENERAL STRUCTURE OF HYBRID STN 

ANALYSIS SYSTEM  

The approach to hybrid audio/speech modeling is based on a 

combination of three different signal processing techniques: 

sinusoidal, matching pursuit with frame-based psychoacous-

tic optimized wavelet packet dictionary and bark-scaled 

adapted wavelet packet noise analysis. Sinusoidal part is 

represented as sums of sinusoids with instantaneous parame-
ters (amplitude, frequency and phase), transients are modeled 

by matching pursuit with frame-based psychoacoustic opti-

mized wavelet packet dictionary and finally noise is 
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processed by bark-scaled adapted wavelet packet analysis. 

The general structure of the analysis system is presented in 

figure 1. 
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Figure 1 – General structure of hybrid SNT analysis system. 

In the given sinusoidal + transients + noise (STN) model, 
sinusoidal modeling is directly applied to the input signal. 

Then, transients are detected via an energy threshold com-

bined with a partial loudness edge detection scheme that op-

erates on the sinusoidal modeling residual. Once the sinu-

soidal and transient components have been analyzed, the 

residual of the sinusoidal + transients modeling procedure is 

captured by the bark-scaled adapted wavelet packet noise 

model. The transient signal is parameterized by matching 

pursuit with frame-based psychoacoustic optimized wavelet 

packet dictionary. Thus the proposed system produces SNT 

separation and parameterization of each separated part. 

This analysis scheme provides good coordination of the used 
analysis techniques and allows efficient processing of any 

speech/audio signal. 

3. ADVANCED SINUSOIDAL MODEL  

3.1 Sinusoidal analysis 

The sinusoidal part of the signal  can be expressed by 

the following formula: 

 (1) 

where  - the instantaneous magnitude of the -th sinu-

soidal component,  is the number of components and 

 is the instantaneous phase of the -th component. 

There is a definite correlation between  and the instan-

taneous frequency . It can be presented in the following 

way: 

 (2) 

where  is sampling frequency and  the initial phase 

of -th harmonic. The implemented sinusoidal analysis sys-
tem extracts the periodic part of the signal. This part is 

represented by sinusoidal parameters that are instantaneous 

frequency, amplitude, phase and frequency gradient. The 

scheme of the sinusoidal analysis operates as follows: first, 

the source signal is processed through windowing procedure 

in order to form analysis frames. Then the following instan-

taneous harmonic parameters estimation technique is applied. 

The signals bandwidth is separated into overlapping bands 

and instantaneous sinusoidal parameters are estimated in 

each band by analysis filter that is described in [5]. The val-

ues of instantaneous amplitude, frequency, and phase are 

evaluated as [5]: 

 (3) 

 (4) 

 (5) 

where 

, (6) 

, (7) 

 

 

(8) 

 and  are frequency values that specify frequency band 

of the filter in Hz and  is the length of the analysis frame. 

The estimation procedure involves iterative frequency recal-

culation with a predefined number of iterations. At every 

step the bandwidth of the filter is adjusted in accordance 

with the calculated frequency value in order to position en-
ergy peak in the centre of the band (see figure 2). At the ini-

tial stage the frequency range of the signal frame is covered 

by overlapping bandwidths  (where  is the num-

ber of frequency bands) with central frequencies 

 respectively. At every step the respective instan-

taneous frequencies  are estimated at 

the instant  that corresponds to the centre of the frame. 

Then the central bandwidth frequencies are reset 

 before the next iteration. After energy peaks local-
ization (figure 2b) the final sinusoidal parameters (ampli-

tude, frequency and phase) are estimated. Additional instan-

taneous frequency values are calculated with a specified 

time offset in order to estimate frequency gradient. During 

adjustment of the filter bands some of them may locate the 

same sinusoid. Duplicated parameters are discarded by 
comparison of estimated frequency values. To avoid estima-

tion of transients by sinusoidal modelling evaluated parame-

ters are tracked from frame to frame. The frequency and 

amplitude values of adjacent frames are compared in order 

to eliminate short sinusoidal components that apparently 

model the transient part of the signal. 

 

3.2 Sinusoidal synthesis 

The major steps of sinusoidal synthesis are the following. 

The phase values are matched between frames using cubic 

polynomial interpolation function. Exact phase matching 
obviously guarantees exact frequency matching. Having in-
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stantaneous phase functions for every sinusoidal component 

the sinusoidal part of the frame can be synthesized using (1). 

Synthesized frames are concatenated with a specified win-

dow function and overlap. 

a)  

b)  

Figure 2 – Iterative filters adjustment (B1-B12 frequency band-
widths): a) – initial frequency band separation; b) – frequency band 

separation after the second iteration. 

4. WAVEFORM MATCHING MODELS 

4.1 Transients modelling using matching pursuit 

Matching pursuit (MP) algorithms for compact representa-

tion of the transient part of the signal are used in several 

parametric audio encoding techniques [6,7]. The main task 

of MP procedure in application is to find a method for rank-

ing and choosing most relevant component in the signal and 

selecting the function from the dictionary for compact input 

signal representation with minimal error. The optimization 

process of MP procedure can be based on the knowledge of 

psychoacoustic properties and human perception of a signal. 

It allows scaling the dictionary size according to auditory 
perception. The psychoacoustic adaptive criterion is used for 

assigning the dictionary elements to the individual segments 

in a rate-distortion optimal manner. Such techniques are 

successfully applied for damped sinusoid and wavelet 

packet (WP) [7,8]. 

 

4.2 MP with frame-based psychoacoustic optimized WP 

dictionary 

From WP retrospective let’s assume that  are 

scores of WP and  are 

the nodes of the WP tree structure. Then the interval  is 

divided into dyadic intervals  that 

correspond to the specific scores of nodes . Par-

ticularly , where 

 is a basic form in a signal space 

. The node  of the WP 

tree is associated with the frequency band. According to the 

dyadic tree structure WP the signal is decomposed nearly 

into critical bands [9]:  where  

describes limit WP tree structure,  is a maximum number 

of WP decomposition levels and depends on frequency 

range. E.g., for audio processing  is equal to 8. According 

to  the spectral band [0–44.1 kHz] is divided into 25 

subbands for audio. The root node  of that tree 

corresponds to the full frequency range of audio signal. 
The general MP algorithm can be described as an approxi-

mation of the analyzed signal  by linear expansion with 

atoms  chosen from a WP-based dictionary  [7]. Each 

vector  is indexed by , with 

, , , where  is the signal 
frame length. Such vectors have a similar time-frequency 

localization properties as a discrete window function, dilated 

by  centred at the . 
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Figure 3 – The block diagram of the MP with frame-based psycho-
acoustic optimized WP dictionary. 

The transients modelling method using the MP with frame-

based psychoacoustic optimized WP dictionary consists of 

two stages. The first one is a frame-based auditory WP opti-

mization based on the entropy cost function for the input 

signal  [9] and the second one is MP algorithm with 
perceptual criteria. At the first stage the results of the tran-

sient modelling are: the frame-based optimized WP tree  of 

the input signal ; computed masking threshold , 

temporal masker  in nodes of WP tree structure  [9]; 

created auditory excitation scalogram associated with input 

signal  using  and  for all nodes. At the first MP 

procedure iteration (see figure 3), the input signal  is 

decomposed with the filter bank which implements the 

frame-based psychoacoustic adaptive WP tree. Each wavelet 

coefficient corresponds to the inner product of the input sig-

nal and an atom  of the dictionary. The most relevant com-

ponents can be found via selected perceptually relevant WP 

coefficients ranking [4]. Selecting the coefficients in the way 

that each new coefficient added provide maximum incre-

mental gain in matching between the auditory excitation sca-

lograms  associated with the original and the modeled 

signals. The auditory excitation scalograms of original and 

modelled signals are constructed the knowledge of masking 

thresholds  in wavelet domain. The selected WP coeffi-

cient with the maximum absolute value is chosen. The con-

tribution of this vector  is then subtracted from 
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the signal  and the process is repeated on the residue 

. At the -th iteration, the residue  is: 

 (9) 

where  is the weight associated with the optimum vector 

 at the -th iteration, and  is the WP-dictionary 

index at the -th iteration. The optimum vector is the vector 

with the highest inner product and with the residual signal 

. Each WP coefficient which has largest excitation 

weight is added to the modelled representation. The excita-

tion weight is associated with difference between the refer-

ence WP coefficients excitation scalogram and the modelled 

excitation scalogram. 

MP algorithm can be realized according to the following 

steps: 

Input data: frame-based optimized WP tree structure  to 

the input signal ; masking threshold ; temporal 

masker  in nodes of ; auditory excitation scalogram 

 associated with input signal  

 set the iteration number ; 

NEXT: 

 allocate  and set  for all  in cor-

respondence with WP tree structure ; 

 calculate  for all nodes , using  [9]; 

 if  then STOP 

 if , then  for  

of node  

 select from  the relevant coefficients  

which has largest excitation weight; 

 create auditory excitation scalogram associated with 

modeled signal using  and Fl,n
m-1 for passed itera-

tion and each new relevant coefficients  

 choose the weight  which improve the 

matching between the reference excitation scalogram 

and the modelled excitation scalogram; 

 get the position of chosen WP coefficient: , 

, ; 

 set 1 at position : ; 

 synthesis of the atom  from  using in-

verse WP with the corresponding tree structure  as-

sociated with WP-dictionary; 

 compute the residual signal  from  and 

 according to (9); 

 apply the frame-based optimized WP with corres-

ponding tree structure to the residual signal ; 

 increase the iteration number ; 

 GO to NEXT. 

The main advantage of the algorithm is perceptual distor-

tion measure minimization defined in the frame-based per-

ceptually optimized time-frequency tilling map of corres-

ponding WP decomposition to select the optimum atom for 

each iteration of the pursuits. Furthermore, a psychoacous-

tic stopping criterion for the given procedure is presented. 

The number of MP algorithm iterations on the analysis 
frame is determined by quantity of the perceptually relevant 

WP coefficients in corresponding WP decomposition. A 

comparison of convergence behaviour between three differ-

ent MP algorithms is shown in figure 4. The transient part is 

modelled by MP procedure using frame-based psychoacous-

tic optimized WP dictionary (dick solid line) has lower 

Mean-Square-Error (MSE) then another one based on the 

MP with over-complete WP dictionary (think solid line) and 

the MP with damped sinusoids (dashed line). 
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Figure 4 – A comparison of different MP algorithms. 

4.3 Transient detection 

The transient detection schema is based on the idea that ener-

gy of the residual signal (transient + noise) increases rapidly 

in the presence of a transient [7]. These changes may corres-

pond with energy variations or energy redistribution among 

different frequency bands. The residual signal is transferred 

to the wavelet domain using 2 level WP decomposition. The 

algorithm computes the energy of the wavelet coefficients in 

each subband. The energy in each subband of frame i is di-

vided by the energy of neighboring frames  and 

 and compared with a threshold. The threshold value 
depends on amplitude parameters, extracted at the sinusoidal 

analysis stage, in order to ignore masked transients. 

5. EXPERIMENTS 

An audio sound is used in order to show analysis system’s 

performance. It is a bell tune that was sampled at 44100 Hz 

(figure 5(a),(b)). Each stage of the separation process is pro-

vided with the corresponding estimated part of the signal (as 

a spectrogram and a waveform) to give explicit presentation 

of the whole technique.  
The sinusoidal analysis was carried out using the following 

features: analysis frame length – 48 ms, analysis step – 14 

ms, filter bandwidth – 35Hz, windowing function – Ham-

ming window. The synthesized periodic part is shown in 

figure 5(c),(d). As can be seen from the spectrogram, the 

periodic part contains only long sinusoidal components with 

high energy localization. The transients are left untouched in 

the residual signal that is presented in figure 5(e),(f). The 

periodic/residual ratio is rather high – 14.77 dB, that indi-

cates that the most of the source signal’s energy was repre-

sented by sinusoidal parameters. 
Figure 5(g),(h) shows the transients components which was 

detected from residual part (figure 5(e),(f)), and modelled by 

proposed MP with frame-based auditory optimized diction-

ary algorithm. The input samples of residual signal (figure 

5(e),(f)) were partitioned into frames of length 1024. In the 

experiments filters from Daubechies family with 40 coeffi-

cients were used. 
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Figure 5 – Experimental results. 

The reconstructed transients shown in figure 5(g) required 

20, 23, 18, 32, 36, 25, 27 and 20 atoms correspondingly. The 

noise component is illustrated in figure 5(i),(j). The summa-

tion of the sines + transient + noise portions yields a signal 

that is perceptually indistinguishable from the original. 

6. CONCLUSIONS 

The advanced sinusoidal analysis with parameters tracking 

can properly process a signal without any prior detection; can 

accurately separate periodical part, saving noise and original 
transients in the residual. Making periodic separation first 

significantly simplifies further processing (especially tran-

sient detection). The proposed methodology for selecting 

most relevant wavelet coefficients is based on maximizing 

the matching between the auditory excitation scalograms 

associated with original and modeled signal correspondingly. 

The major advantage of this method is that the wavelet pack-

et dictionary is perceptually optimized for each signal seg-

ment. It significantly reduces the number of coefficients re-

quired to achieve a given perceptual distortion. 
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