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Meryem Jabloun, J́erôme Van Zaen and Jean-Marc Vesin

EPFL, Signal Processing Institute (LTS1), Lausanne, 1015 CH, Swizerland.
E-mail addresses: firstname.lastname@epfl.ch, URLs: www.epfl.ch.

ABSTRACT

Phase rectified signal averaging (PRSA) is a technique re-
cently introduced that outperforms the classical Fourier
analysis when applied to nonstationary signals corrupted by
impulsive noise. Indeed, the PRSA helps enhance quasi-
periodic components in nonstationary signals while artifacts,
intermittent components and high level noise are canceled.
Thus the frequency estimation is improved.

In this paper, we introduce a new time-frequency rep-
resentation (PRSA-TFR) which is obtained by applying the
PRSA to sliding windows along the signal. This PRSA-TFR
keeps the advantages of the PRSA and displays the time evo-
lution of significant frequency components.

The comparison with classical time-frequency represen-
tations, such as the spectrogram and the Smoothed Pseudo-
Wigner-Ville (SPWV) distribution, illustrates the potential of
the PRSA-TFR to better reduce the noise level and to make
the interpretation of the time-frequency features of the sig-
nal easier. The interest of the PRSA-TFR for real signals is
illustrated on an electroencephalogram signal.

1. INTRODUCTION

In many applications such as mechanics, radar, sonar, wire-
less communications, speech processing and biomedical en-
gineering, one is interested in the time evolution of frequency
contents of nonstationary signals. The standard Fourier
analysis is not useful for analyzing these nonstationary sig-
nals. Indeed, information which is localized in time such as
impulsive noise and high frequency bursts cannot be easily
detected and removed from the Fourier transform.

The time-frequency localization can be achieved by us-
ing the Cohen distributions which are bilinear and covariant
time-frequency representations (TFR) [1, 2]. We mention
the example of the spectrogram and the Smoothed Pseudo-
Wigner-Ville distribution [1]. Nevertheless, these classi-
cal TFRs not only present a lack of resolution due to the
Heisenberg-Gabor principle but they are inefficient in the
presence of impulsive noise. Several techniques have been
proposed to improve the TFR resolution such as the reassign-
ment method [3, 4, 5] and the matching of TFRs with unitary
warping operators [6].

In this paper, our main contribution is to better character-
ize time-frequency domain events for real signals which are
corrupted by artifacts and impulsive noise. We define a new
TFR based on the PRSA, a recently introduced technique [7]
based on a simple principle. When applied to a nonstationary
signal, the PRSA helps enhance existing quasi-periodic com-
ponents that are hidden in a classical Fourier transform of the
signal. The intermittent components, artifacts and noise are
reduced, which improves frequency estimation.

The time-frequency analysis proposed is performed by
first windowing the signal, so as to isolate only well-localized
slices, and then by applying to them the PRSA [7]. This gives
rise to the windowed PRSA transform. The magnitude of
the PRSA transform is called the PRSA-TFR. This new TFR
uses the ability of PRSA to capture the local periodicities
and to improve the estimation of the frequency components
underlying their time evolution.

The paper is organized as follows. The PRSA principle is
described and the PRSA-TFR is introduced in Section 2. Re-
sults and discussions are presented in Section 3 for simulated
signals and an electroencephalogram (EEG) signal. The final
section concludes with a summary and some perspectives on
our study.

2. PRSA AND TIME-FREQUENCY
REPRESENTATION

2.1 A short introduction to PRSA

The basic idea of PRSA is very simple and consists in averag-
ing selected segments of the studied signaly. These segments
are symmetric regarding to so-called anchor points, samples
at which the instantaneous phase ofy is close to zero. The
averaging process leads to a new signal, ’PRSA signal’, the
Fourier transform of which is called ’PRSA transform’.

Thanks to the averaging process, the PRSA method acts
as a rejection filter of possibly correlated and nonperiodic
components in the signal (such as noise and artifacts). On
the other hand the quasi-periodic components of the initial
signaly are conserved and enhanced.
In the following, the simplest version of PRSA is described
[7]. The steps of the PRSA are illustrated in Fig.1.

The anchor points correspond to the increases in the real
signaly (Fig.1(b)), i.e. instantsn such that

yn > yn−1. (1)

Assuming a total ofM anchor points indexed bynm, m =
1, . . . ,M, segments of length 2L + 1 are centered on these
anchor points (Fig.1(c-e)),

[ynm−L,ynm−L+1, . . . ,ynm, . . . ,ynm+L−1,ynm+L] . (2)

All these segments are averaged, which leads to the PRSA
signalỹℓ

ỹℓ =
1
M

M

∑
m=1

ynm+ℓ, for ℓ = −L,−L+1, . . . ,L. (3)

The PRSA transform is the discrete Fourier transform (DFT)
of the PRSA signal (3) and it is denoted byỸq,

Ỹq =
2L

∑
ℓ=0

ỹℓ−L e− j2π q
Qℓ

, for q = 0,1, . . . ,Q−1, (4)
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Figure 1: Principle of PRSA: (a) signalyn = sin(2π 0.14n), (b)
Anchor points, (c)-(e) Segments of length 2L+1 = 61 centered on
anchor points, (f) (left side) PRSA signal ˜yℓ (3), (center) squared
magnitude of the PRSA Transform|Ỹq|

2 (4) and (right side) signal
spectrum.

where q
Q is the discrete frequency andQ is the DFT size.

To illustrate the potential of the PRSA, let us consider the
following signaly defined by:

yn = sin(2π 0.23n)+sin(2π 0.29n)+
15sin

(

2π (0.02n2 +0.01n)
)

I[50,100](n)+

2sin(2π 0.001n2))I[800,840](n)+ Imp(n),
(5)

whereI[a,b] is the indicator of the time interval[a,b]. y is
composed of the sum of two sinusoids at frequencies 0.23
Hz and 0.29 Hz, the sampling Frequency isFs = 1Hz. The
signal is contaminated by an impulsive noiseImp and two
intermittent frequency-modulated components.
As can be observed from Fig.2(c), the frequency peak at 0.29
Hz is clearly enhanced using the PRSA transform (4) while
this peak is hidden in the classical spectrum ofy (Fig.2(b)).
Other examples illustrating the potential of the PRSA as a
tool to improve the estimation of existing periodicities are
provided in [8, 9]. In Appendix A, the relationship between
a signal composed of a sum of sinusoids and its PRSA signal
is derived.
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Figure 2:Enhancement of existing quasi-periodic components us-
ing the PRSA: (a) studied signal (5), (b) signal spectrum and (c)
squared magnitude of the PRSA transform|Ỹq|

2 (4).

2.2 Time-frequency representation based on the PRSA

In this section, we introduce a new time-frequency represen-
tation based on signal windowing and local application of
PRSA. We aim both at exploring the ability of the PRSA to
capture the local periodicities and at highlighting the time
variation of the frequency components.

Let us consider a signal{xk}k=0,...,K−1, whereK is the
sample size. A sequence{xk−Kw+1,xk−Kw+2, . . . ,xk} is ob-
tained from this signal using a moving window of lengthKw.
For reasons of clarity, the considered sequence is locally de-
noted byy:

yn = xk−Kw+n for n = 1,2, . . . ,Kw. (6)

The PRSA signal ˜xk,ℓ of this sequence and its PRSA trans-
form X̃k,q are defined using (3) and (4) respectively by:

x̃k,ℓ = ỹℓ for ℓ = −L,−L+1, . . . ,L, (7)

X̃k,q = Ỹq for q = 0,1, . . . ,Q−1. (8)

By repeating the procedure for allk = Kw, . . . ,K −1, a time-
frequency representation which describes the time-evolution
of the frequency features of the signal is obtained (in analogy
with the short-time Fourier transform and the spectrogram):

Time × Frequency −→ PRSA-TFR
(k , q) 7−→

∣

∣X̃k,q
∣

∣

2
.

(9)

In the following, examples illustrating the potential of the
PRSA-TFR are presented and compared to classical TFRs,
the SPWV distribution [1, 2], the spectrogram and the reas-
signed spectrogram [4].

3. PRSA-TFR VERSUS CLASSICAL TFRS -
RESULTS AND DISCUSSIONS

3.1 Application to simulated signals

Let us consider simulated signals shown on Fig.3 (a), (b) and
(c). The first signal is a sum of two sinusoid components (at
constant frequencies 50 Hz and 160 Hz) and of a frequency-
modulated component (linear modulation). These three com-
ponents are embedded in an additive white Gaussian noise
AWGN, the variance of which isσ2 = 16, and an impulsive
noiseImp of magnitude 40 and occurring with a probability
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Figure 3: Examples of simulated signals. (a) signal composed
of the sum of three components with linear frequency modulations
and constant amplitudes. (b) signal composed of the sum of three
components with nonlinear frequency modulations. (c) a nonlinear
amplitude modulated signal.

of 21 spikes per sec:

y1[n] = 4sin(2π 160n+ π
3 )+

6sin(2π 50n+ π
6 )I[0.8,3.4](n)+

6sin
(

2π (0.02n2 +43.5n)+ π
8

)

I[0.6,3.9](n)+
AWGN(n)+ Imp(n).

(10)
The second signal is the sum of three frequency-modulated
components (nonlinear and exponentially decreasing mod-
ulation) of a constant amplitude equal to 4. These three
components are, also, embedded in additive white Gaussian
noise, the variance of which isσ2 = 12.25 and an impul-
sive noise of magnitude 40 occurring with a probability of
21 spikes per sec.
The last example is that of a nonlinear amplitude modulated
signal embedded in additive white Gaussian noise, the vari-
ance of which isσ2 = 0.04:

y3[n] = a(n) sin(2π 136.5 n)+AWGN(n), (11)

wherea(n) = 0.21+ 0.2 sin(2π 51.5 n). The sampling fre-
quency in all cases isFs =500 Hz.

In order to compare the classical TFRs with the PRSA-
TFR, we consider the following details:
• For the PRSA-TFR, spectrogram and the reassigned

spectrogram, the same size of the moving window is con-
sidered,Kw = 300.

• We ignore nonpositive values in the SPWV distribution
in order to be able to have a representation in dB,
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Figure 4: Example 1 of linear modulations: PRSA-TFR versus
spectrogram and SPWV distribution. (a), (c) and (e) simulated
signal without noise processed by PRSA-TFR, spectrogram and
SPWV respectively. (b), (d) and (f) simulated signal corrupted by
impulsive noise and AWGN noise processed by PRSA-TFR, spec-
trogram and SPWV respectively.

• all TFRs obtained are normalized by their maximum
value and the same dynamic in dB is fixed to a thresh-
old equal to -17 dB, for comparison purposes,

• the segments centered on the anchor points are
2L + 1 = 131 sample length and the DFT size is
Q = 1024.

One can observe that the PRSA-TFR presents a slight de-
crease in time-frequency resolution, mainly induced by its
construction. Indeed, the DFT is applied to the PRSA sig-
nal, the length of which is smaller than the moving window
length. Despite this slight decrease in time-frequency resolu-
tion with the PRSA-TFR, one can distinguish the frequency
components better than using classical TFRs with respect toa
same fixed dynamic. The PRSA-TFR succeeds in removing
the impulsive noise. In both examples with linear and non-
linear modulations, the frequency components are enhanced
and the time-evolution of the frequencies clearly appears.

Now let us consider the signal of example 3. This signal
can be rewritten as a sum of two signals embedded in addi-
tive white Gaussian noise. The first signal is a sinusoid at
a constant frequency 136.5 Hz and having a constant ampli-
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Figure 5:Example 2 of nonlinear modulations: PRSA-TFR versus
spectrogram, SPWV distribution and reassigned spectrogram. (a),
(c), (e) and (g) simulated signal without noise processed by PRSA-
TFR, spectrogram, SPWV and reassigned spectrogram respectively.
(b), (d), (f) and (h) simulated signal corrupted by impulsive noise
and AWGN noise processed by PRSA-TFR, spectrogram, SPWV
and reassigned spectrogram respectively.

tude equals to 0.21 while the second signal is the product of
two sinusoids at frequencies 136.5 Hz and 51.5 Hz. This sec-
ond signal contributes to the apparition of two components at
frequencies 136.5 Hz±51.5 Hz in the spectrogram shown in
Fig.6(b)). In contrast, one can see that in Fig.6(a), this sec-
ond signal is canceled by the PRSA-TFR whereas the first
signal is enhanced.
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Figure 6: Example 3 of a nonlinear amplitude modulated signal:
(a) PRSA-TFR versus (b) spectrogram.

3.2 Analysis of EEG signal using PRSA-TFR

The PRSA-TFR is compared to the spectrogram and the
SPWV on an EEG signal. This signal was recorded on the
right-sided parieto-occipital electrode PO4 during a visual
recognition task. It is shown in Fig.7(a), where the vertical
dashed line denotes stimulus onset. The sampling frequency
is 500 Hz. The TFRs obtained with the PRSA, spectrogram
and SPWV are shown in Fig.7(b), (c) and (d) respectively.
The sliding window length is 400 and the PRSA length is
191. The time-frequency locations with significant energies
are visible with each TFR. However the evolution of the os-
cillations is better described by the PRSA-TFR, and the vari-
ous components are also easier to discriminate. For example
the 90 Hz oscillation decreases in frequency after stimulus
onset is clearly visible with the PRSA-TFR. Another event is
the appearance of two oscillatory components with increas-
ing frequencies between 40 and 60 Hz shortly after stimulus
presentation, which is delineated by the PRSA-TFR. In con-
trast, with the spectrogram or the SPWV, it is more difficult
to interpret this oscillation.

4. CONCLUSION AND PERSPECTIVES

We introduced a new time-frequency representation, called
PRSA-TFR, by locally applying the PRSA on moving win-
dows along the signal. This PRSA-TFR conserves the advan-
tages of PRSA, which are mainly the attenuation of the noise
level, especially with regard to impulsive noise, and the en-
hancement of quasi-periodic components. Despite a slight
decrease in time-frequency resolution compared to classical
TFRs, the PRSA-TFR makes the detection of dominant time-
varying frequencies in nonstationary signals possible while
noise level is decreased.

In future studies, we aim at studying the PRSA-TFR sta-
tistical features when applied to nonstationary signals, for
segmentation and signal detection purposes.
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Figure 7:Example of EEG signal: PRSA-TFR versus spectrogram
and SPWV distribution. (a) EEG signal, (b) PRSA-TFR, (c) spec-
trogram and (d) SPWV.

A. PRSA OF SINUSOIDAL MULTICOMPONENT
SIGNAL

A short theoretical derivation of the average segment result-
ing from the application of PRSA to one single sinusoid sig-
nal is presented in [9]. This illustrates the contrast between
the simplicity of the concept and the difficulty in extracting
exact calculations. Here, we consider a signal composed of
K sinusoidal components:

yn =
K

∑
k=1

ak sin(2π fk n), (12)

whereak and fk are the constant amplitude and frequency of
thekth component. According to (3), the PRSA signal of the
signal of (12) is written :

ỹℓ =
1
M

M

∑
m=1

(

K

∑
k=1

ak sin(2π fk (nm+ ℓ))

)

. (13)

which leads to the following expression :

ỹℓ =
K

∑
k=1

Ak cos(2π fk ℓ)+Bk sin(2π fk ℓ), (14)

where

Ak = ak
1
M

M

∑
m=1

sin(2π fk nm) (15)

Bk = ak
1
M

M

∑
m=1

cos(2π fk nm). (16)

We remark that the PRSA signal (14) is still composed of
K sinusoidal components, the frequencies of which are the
same as those of the components of the original signal (12).
However, their amplitudesAk andBk are proportional to the
amplitudesak of the components of the original signal. For
each component, the proportional factor (Ak

ak
or BK

ak
) is con-

stant and only depends from the number of the anchor points
M, the instant of anchor pointsnm and the frequencyfk. This
factor takes value in[−1,1], which explains the enhancement
of some frequencies and the attenuation of some others.
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