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ABSTRACT The time-frequency analysis proposed is performed by

e . . . : irst windowing the signal, so as to isolate only well-lozall

Phase rectified signal averaging (PRSA) is a technique ré'—r.s : S
cently introduced that outperforms the classical Fourief’ihcef ! ?ﬂd f,ﬁ‘,ﬁ]%b{vagpg&”g,iot:hﬁ”; t?ri PI‘T’EA [n71]. -Il—::tlsg |ve?
analysis when applied to nonstationary signals corrupyed b hseP(Ij?SA?tr n forrﬁi led tha FS>|gSA. TFRe Th?gn \LIJV'I?F?Q

impulsive noise. Indeed, the PRSA helps enhance quasit® . <’-:l|'SOf S called the he ocal Snew i
periodic components in nonstationary signals while astifa  Uses the ability of PRSA to capture the local periodicities
intermittent components and high level noise are cancele(‘jimd to improve the estimation of the frequency components

> e U underlying their time evolution.
Thus the frequency estimation is improved. The paper is organized as follows. The PRSA principle is

resélgt;htlitsjnp?gsré XV $’F”F]et)r c\)/\(/jrllji(c::?] ias gggigrgsgreguer?z r?ﬁe'described and the PRSA-TFR is introduced in Section 2. Re-
PRSA 10 sliding windows alona the sianal Th%/s ;SgA_%_FRsults and discussions are presented in Section 3 for siedulat
keeps the advzgntages of the P??SA ar?d di.SpIaYS the time evg)i_gn_als and an electroencephalogram (EEG) signal. The final
lution of significant frequency components. ection concludes with a summary and some perspectives on

The comparison with classical time-frequency represenE)ur study.

tations, such as the spectrogram and the Smoothed Pseudo- )

Wigner-Ville (SPWV) distribution, illustrates the poteaitdf 2 PRSAREAQRDEE:E'YI\IEAEFITgﬁUENCY
the PRSA-TFR to better reduce the noise level and to make

the interpretation of the time-frequency features of tlie si 2.1 A short introduction to PRSA

Tlal easiedr. The inlterest of thehPIRSA-TFR forl real signals igq pasic idea of PRSA is very simple and consists in averag-
lustrated on an electroencephalogram signal. ing selected segments of the studied signdlhese segments
are symmetric regarding to so-called anchor points, sanple
1. INTRODUCTION at which the instantaneous phaseya$ close to zero. The
I . . gaveraging process leads to a new signal, 'PRSA signal’, the
In many apph'catl.ons such as mechanllcs, radar,_ sonar, WIr%ouriegr tr%lr?sform of which is called ’gRSA transforr%’.
less communications, spede_ch ﬁropessmgland blc?:cnedlcal €N Thanks to the averaging process, the PRSA method acts
gineering, one is interested in the time evolution of fretpye R . ’ C
: : . as a rejection filter of possibly correlated and nonperiodic
conten_ts_of nonstationary S|gnals. The standa_rd Fouri€ ompor{ents in the sigrl?al (sugh s noise and artifal?:ts). on
analysis is not useful for analyzing these nonstationagy si the other hand the quasi-periodic components of the initial
nals. Indeed, information which is localized in time such as ignaly are conserved and enhanced

impulsive noise and high frequency bursts cannot be easi . . . . .
. the following, the simplest version of PRSA is described
detected and removed from the Fourier transform. [7]. The steps of the PRSA are illustrated in Fig.1.

__The time-frequency localization can be achieved by us* =y, "o oh o noints correspond to the increases in the real
ing the Cohen distributions which are bilinear and Cova”ansignaly(Fig 1(b)), i.e. instanta such that

time-frequency representations (TFR) [1, 2]. We mention ' T
the example of the spectrogram and the Smoothed Pseudo- Yn > Yn-1. 1)
Wigner-Ville distribution [1]. Nevertheless, these class
cal TFRs not only present a lack of resolution due to th
Heisenberg-Gabor principle but they are inefficient in theanchor points (Fig.1(c-e))
presence of impulsive noise. Several techniques have been ' '
proposed to improve the TFR resolution such as the reassign-  [Ynn—L, Ynm—L+1s - - s Ynms - - - » Yam+L—1 Ynm-L] - 2

ment method [3, 4, 5] and the matching of TFRs with unitaryA" these segments are averaged, which leads to the PRSA
warping operators [6]. '

Assuming a total oM anchor points indexed bgy,, m=
,...,M, segments of lengthl24-1 are centered on these

In this paper, our main contribution is to better character—S ignaly;
ize time-frequency domain events for real signals which are _ 1M
corrupted by artifacts and impulsive noise. We define a new ¥/ = > Yoo, for f=-L-L+1...L (3
TFR based on the PRSA, a recently introduced technique [7] m=1

based on a simple principle. When applied to a nonstationaryhe PRSA transform is the discrete Fourier transform (DFT)
signal, the PRSA helps enhance existing quasi-periodic conof the PRSA signal (3) and it is denoted Yy

ponents that are hidden in a classical Fourier transforineof t

signal. The intermittent components, artifacts and noise ag _ < ¢ = oi2mg! for —01 _1 (4
reduced, which improves frequency estimation. q gow_" ’ 4=01....Q-1 (4)

© EURASIP, 2009 2303



50

100

120 140

1 1

100

120 140

1 1

Si gnal

Figure 2:Enhancement of existing quasi-periodic components us-
ing the PRSA: (a) studied signal (5), (b) signal spectrum and (c)
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squared magnitude of the PRSA transfd¥f}? (4).

2.2 Time-frequency representation based on the PRSA

In this section, we introduce a new time-frequency represen
tation based on signal windowing and local application of
PRSA. We aim both at exploring the ability of the PRSA to
capture the local periodicities and at highlighting thedim

. a g u Timfo 10(?_’ 120 10 variation of the frequency components.

05 - - Let us consider a signgl }k-o,. k-1, WhereK is the

(‘,f) ’65 0 sample size. A sequUendei_k,+1,Xk—Ky+2;---, X} 1S Ob-

(g o ¢ (%20 tained from this signal using a moving window of lenggh.
Los 0, 0 For reasons of clarity, the considered sequence is localy d

A0 W g0 01020304 70 01020304 noted byy:
Local referenced THn}Q Frequency ¢ Frequency
L .{:’ Yn = Xk—Ky-+n for n=12,... Kg. (6)

The PRSA signakg, of this sequence and its PRSA trans-

Figure 1: Principle of PRSA: (a) signajn = sin(2r10.14n), (b) 5 i ; )
form X, 4 are defined using (3) and (4) respectively by:

Anchor points, (c)-(e) Segments of length-21 = 61 centered on
anchor points, (f) (left side) PRSA signgl (3), (center) squared

magnitude of the PRSA Transforf¥,|? (4) and (right side) signal Xe =Y for ¢(=-L,—-L+1,...,L, @)
spectrum. Xeq =Y for q=0,1,...,Q—1. (8)

By repeating the procedure for &= Ky, ..., K —1, a time-
frequency representation which describes the time-deolut
of the frequency features of the signal is obtained (in analo

To illustrate the potential of the PRSA, let us consider th&yith the short-time Fourier transform and the spectrogram)
following signaly defined by:

Where% is the discrete frequency an@lis the DFT size.

Time x
k

Frequency — PRSA-TFR
52
a) Xial”-

In the following, examples illustrating the potential ofeth
PRSA-TFR are presented and compared to classical TFRs,
the SPWV distribution [1, 2], the spectrogram and the reas-

wherell,p is the indicator of the time intervdh,b]. yis ~ Signed spectrogram [4].
composed of the sum of two sinusoids at frequencies 0.23
Hz and 0.29 Hz, the sampling Frequencyris= 1Hz. The
signal is contaminated by an impulsive nolsep and two RESULTS AND DISCUSSIONS

intermittent frequency-modulated components. L . .

As can be observed from Fig.2(c), the frequency peak at 0.251 Application to simulated signals

Hz is clearly enhanced using the PRSA transform (4) while_et us consider simulated signals shown on Fig.3 (a), (b) and
this peak is hidden in the classical spectruny ¢Fig.2(b)).  (c). The first signal is a sum of two sinusoid components (at
Other examples illustrating the potential of the PRSA as @onstant frequencies 50 Hz and 160 Hz) and of a frequency-
tool to improve the estimation of existing periodicitie® ar modulated component (linear modulation). These three com-
provided in [8, 9]. In Appendix A, the relationship between ponents are embedded in an additive white Gaussian noise
a signal composed of a sum of sinusoids and its PRSA sign&W GN the variance of which i = 16, and an impulsive

is derived. noiselmp of magnitude 40 and occurring with a probability

(9)

—

Sin(2r0.23n) 4 sin(2710.29n) +
15sin(271(0.02n% +0.01n)) I50.100 (M) +
2sin(210.001n?) ) [1goqg4q (M) + IMp(n),

Yn

(5)

3. PRSA-TFR VERSUSCLASSICAL TFRS-
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Figure 3: Examples of simulated signals. (a) signal composed
of the sum of three components with linear frequency modulations
and constant amplitudes. (b) signal composed of the sum of three
components with nonlinear frequency modulations. (c) a nonlinear
amplitude modulated signal.
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Figure 4: Example 1 of linear modulations: PRSA-TFR versus
. . spectrogram and SPWV distribution. (a), (c) and (e) simulated
of 21 spikes per sec: signal without noise processed by PRSA-TFR, spectrogram and
_ . i SPWV respectively. (b), (d) and (f) simulated signal corrupted by
yn = 4s!n(27T16(h +n§)+ impulsive noise and AWGN noise processed by PRSA-TFR, spec-
6sin(2m50n+ ¢)lj0.83.4/(N)+ trogram and SPWV respectively.
6sin(2m(0.02n° +435n) + §

AWGNN) +Imp(n).
(10) o all TFRs obtained are normalized by their maximum

The second signal is the sum of three frequency-modulated value and the same dynamic in dB is fixed to a thresh-
components (nonlinear and exponentially decreasing mod- old equal to -17 dB, for comparison purposes,
ulation) of a constant amplitude equal to 4. These three, the segments centered on the anchor points are
components are, also, embedded in additive white Gaussian 2 | 1 = 131 sample length and the DFT size is
noise, the variance of which is? = 12.25 and an impul- Q = 1024.
sive noise of magnitude 40 occurring with a probability of
21 spikes per sec.
The last example is that of a nonlinear amplitude modulate
signal embedded in additive white Gaussian noise, the var
ance of which iso? = 0.04:

&)ne can observe that the PRSA-TFR presents a slight de-
crease in time-frequency resolution, mainly induced by its
construction. Indeed, the DFT is applied to the PRSA sig-
nal, the length of which is smaller than the moving window
ys[n] = a(n)sin(2mr1365n)+AWGNN), (11) length. Despite this slight decrease in time-frequencylues
) ) tion with the PRSA-TFR, one can distinguish the frequency
wherea(n) = 0.21+ 0.2 sin(2rt51.5n). The sampling fre-  components better than using classical TFRs with respect to

quency in all cases i& =500 Hz. _ same fixed dynamic. The PRSA-TFR succeeds in removing
In order to compare the classical TFRs with the PRSAthe impulsive noise. In both examples with linear and non-
TFR, we consider the following details: linear modulations, the frequency components are enhanced

e For the PRSA-TFR, spectrogram and the reassignednd the time-evolution of the frequencies clearly appears.
spectrogram, the same size of the moving window is con-  Now let us consider the signal of example 3. This signal

sideredKy = 300. can be rewritten as a sum of two signals embedded in addi-
e \We ignore nonpositive values in the SPWV distributiontive white Gaussian noise. The first signal is a sinusoid at
in order to be able to have a representation in dB, a constant frequency 136.5 Hz and having a constant ampli-

2305



Frequency (Hz)
Frequency (Hz)

50

2
Time (sec)

(© (dB)

Frequency (Hz)
Frequency (Hz)

50|

2
Time (sec)

N
T
>
o
c
o
3
o
0
[y

Frequency (Hz)

2
Time (sec)

©

2
Time (sec)

2
Time (sec)

()

Frequency (Hz)
Frequency (Hz)

2
Time (sec)

2
Time (sec)

tude equals to 0.21 while the second signal is the product of
two sinusoids at frequencies 136.5 Hz and 51.5 Hz. This sec-
ond signal contributes to the apparition of two components a
frequencies 136.5 Hiz51.5 Hz in the spectrogram shown in
Fig.6(b)). In contrast, one can see that in Fig.6(a), this se
ond signal is canceled by the PRSA-TFR whereas the first
signal is enhanced.
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Figure 6: Example 3 of a nonlinear amplitude modulated signal:
(a) PRSA-TFR versus (b) spectrogram.

3.2 Analysisof EEG signal using PRSA-TFR

The PRSA-TFR is compared to the spectrogram and the
SPWYV on an EEG signal. This signal was recorded on the
right-sided parieto-occipital electrode PO4 during a aisu
recognition task. It is shown in Fig.7(a), where the vettica
dashed line denotes stimulus onset. The sampling frequency
is 500 Hz. The TFRs obtained with the PRSA, spectrogram
and SPWV are shown in Fig.7(b), (c) and (d) respectively.
The sliding window length is 400 and the PRSA length is
191. The time-frequency locations with significant enesgie
are visible with each TFR. However the evolution of the os-
cillations is better described by the PRSA-TFR, and the vari
ous components are also easier to discriminate. For example
the 90 Hz oscillation decreases in frequency after stimulus
onset is clearly visible with the PRSA-TFR. Another event is
the appearance of two oscillatory components with increas-
ing frequencies between 40 and 60 Hz shortly after stimulus
presentation, which is delineated by the PRSA-TFR. In con-
trast, with the spectrogram or the SPWYV, it is more difficult
to interpret this oscillation.

4. CONCLUSION AND PERSPECTIVES

Figure 5:Example 2 of nonlinear modulations: PRSA-TFR versusWe introduced a new time-frequency representation, called
spectrogram, SPWV distribution and reassigned spectrogram. (df,RSA-TFR, by locally applying the PRSA on moving win-
(c), (e) and (g) simulated signal without noise processed by PRSAdows along the signal. This PRSA-TFR conserves the advan-
TFR, spectrogram, SPWV and reassigned spectrogram respectivetages of PRSA, which are mainly the attenuation of the noise
(b), (d), (f) and (h) simulated signal corrupted by impulsive noiselevel, especially with regard to impulsive noise, and the en
and AWGN noise processed by PRSA-TFR, spectrogram, SPWWancement of quasi-periodic components. Despite a slight

and reassigned spectrogram respectively.

decrease in time-frequency resolution compared to clalssic
TFRs, the PRSA-TFR makes the detection of dominant time-
varying frequencies in nonstationary signals possibldevhi
noise level is decreased.

In future studies, we aim at studying the PRSA-TFR sta-
tistical features when applied to nonstationary signais, f
segmentation and signal detection purposes.
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Figure 7:Example of EEG signal: PRSA-TFR versus spectrogram
and SPWV distribution. (a) EEG signal, (b) PRSA-TFR, (c) spec-

trogram and (d) SPWV. 6]

A. PRSA OF SINUSOIDAL MULTICOMPONENT
SIGNAL

A short theoretical derivation of the average segment resul[ ] A. Bauer,

ing from the application of PRSA to one single sinusoid sig-
nal is presented in [9]. This illustrates the contrast betwe
the simplicity of the concept and the difficulty in extragfin
exact calculations. Here, we consider a signal composed of
K sinusoidal components: (8]

K
Yn = z ax sin(2rrfe n), (12)
K=1

whereay and fx are the constant amplitude and frequency of
thek!" component. According to (3), the PRSA signal of the[9]
signal of (12) is written :

) . (13)

. 1 M K )
Vo= mZ1 k;ak sin(2mfx (Nm+£))

2307

which leads to the following expression :

where

K
Ve Z Ay COE(ZT[fk é) + Bk sin(2nfk 5), (14)
K=1
1 M
Ac = akM lesm(ank Nm) (15)
1 M
Bx = akM coq2rtfx Nm). (16)

m=1

We remark that the PRSA signal (14) is still composed of
K sinusoidal components, the frequencies of which are the
same as those of the components of the original signal (12).
However, their amplitude8y andBy are proportional to the
amplitudesay of the components of the original signal. For
each component, the proportional fact
stant and only depends from the number of the anchor points
M, the instant of anchor points, and the frequencyi. This
factor takes value if-1, 1], which explains the enhancement
of some frequencies and the attenuation of some others.

or %K) is con-
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