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ABSTRACT 
 

It is well known that both the rate and the distortion of re-
compressed images depend primarily on the ratio between 
the new and the old quantization steps used. In this paper we 
provide a theoretical basis to this observation, and introduce 
an efficient algorithm to select the recompression quantiza-
tion step. Our approach is based on the structure of the 
quantizer and the distribution of DCT coefficients in subband 
coding. These results can be readily generalized to re-
quantization of other data types. Our conclusion is that the 
proposed approach could be instrumental in recompression 
of still images, while offering straightforward generalization 
to higher and lower dimension signals. 

1. INTRODUCTION 

Many visual applications involve storage and transmission 
of coded images. Often, the data to be transmitted is initially 
coded and stored in high quality. Later on, when transmis-
sion is required, in many cases, the bit-rate of the data has to 
be reduced, to meet the limitations of the transmission media 
and the available resources at the receiving end.  

An overview of various bit-rate reduction methods, 
namely recompression or transcoding, can be found in [1]. 
Most applications require that the method be fast and simple 
while keeping the distortion as low as possible. These de-
mands rule out intuitive solutions such as a cascaded en-
coder-decoder, which are neither fast nor necessarily optimal. 

The focus of this work is on bit-rate reduction of coded 
images, by means of uniform re-quantization. This approach 
involves quantization in two stages. The first stage of quanti-
zation is performed at the encoder and cannot be controlled, 
altered or avoided. The second stage of quantization is per-
formed for recompression. This work deals with designing 
the second stage quantizer of previously quantized data for 
bit-rate reduction. The obtained quantizer design is a result 
of theoretical rate-distortion analysis, carried out throughout 
all re-quantization stages. Moreover, though applied here to 
coded images in the transform domain, the analysis could be 
used for other data types as well such as 1D signals (e.g., 
audio) as well as 3D signals, like 3D imaging or video.  

This work is organized as follows. Section 2 introduces 
the required definitions for the rate-distortion analysis carried 
out in Section 3. In Section 4 experimental results are pre-
sented and in Section 5 this work is concluded. 

2. PROBLEM DEFINITION 

Consider a basic image coding scheme where DCT is ap-
plied to each image block. Each DCT coefficient xu,v at  
position (u,v) in the image is then quantized and  the image 
is coded using variable length coding (VLC). Then, a basic 
re-quantization scheme is applied. The coded image is de-
coded (VLD), re-quantized in the DCT domain and encoded 
again (VLC). The first stage quantizer is denoted by Q1 and 
the quantization step size used is q1. The second stage quan-
tizer is denoted by Q2 and the quantization step size used is 
q2. In addition, a third reference quantizer is used throughout 
this work denoted by Q2,ref. The reference coarse quantizer is 
used directly on the original signal, referred to as direct 
quantization. Q2,ref is mainly used to evaluate the perform-
ance of the second stage quantizer. 
A uniform threshold quantizer (UTQ or midtread) is used for 
all quantization stages, as in [2] and [3]. The quantization is 
uniform, i.e., all the DCT coefficients in the image are quan-
tized using the same quantization step. The quantizer is 
shown in Fig. 1 and defined by: 
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The decision and reconstruction levels of the UTQ are de-
fined as: 
           ( ),0 , ,0 ,0; 0.5 ; 0;i i j i i i jd d j q r r j iq= = − = = ⋅ ,    (
 

2)  

here di,j is decision level  j of the stage i (i=1,2) quantizer 

 second stage quantization 
coul

n the second stage 
quan

w
and ri,j is the reconstruction level. 

The rounding operation in the
d be carried out in two ways that differ by how 0.5 is 

rounded. One option is to round 0.5 to 1 and the other is to 
round it toward 0. It was shown in [4] that rounding to 0 im-
proves the re-quantization performance substantially and that 
is the rounding method used in this work.  

The main goal of this work is to desig
tizer used for image re-quantization so that the bit reduc-

tion is performed effectively with little distortion. Thus, we  
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Figure 1: UTQ quantizer illustration 

aim to avoid distortion introduced by quantization in two 
stages instead of using one coarse quantizer, i.e.:      

           .                    (3) ( ) ( )2 , 2, ,, , : u v ref u vx u v Q x Q x∀ =

To do so, the new re-quantization step size must be a multi-
ple of the first stage quantization step size [2] [3] [5] so that:                                                    

Thus, when calculating the PMF of the visual data after first 
stage quantization, each possible value is a reconstruction 
level of a quantization bin from the first stage quantizer with 
probability weight accordingly. Similarly, the distribution of 
re-quantized data (after second stage quantization) also con-
sists of probability weights of the quantizer’s representation 
levels. In fact, it is possible to regard the re-quantization 
process as rearranging of the probability weights (of quan-
tized coefficients) into new groups, representing the re-
quantized values and their probability distribution. The 
probability weights of the re-quantized data are determined 
by the position of the decision levels of the second stage 
quantizer d2,m relative to the decision levels of the first stage 
quantizer d1,j.  

 
                               .                                 (4) 2 1 ,q kq k= ∈
Choosing q2 according to the requirement in (4) allows de-
veloping rate and distortion expressions for the re-quantized 
DCT coefficients, as a function of k. The resulting rate-
distortion analysis is used to design and evaluate the second 
stage quantizer; it is presented below. 

3. RATE-DISTORTION ANALYSIS 

Analysis of the distortion and bit-rate of re-quantized images 
in the transform domain requires modelling the probability 
distribution of the DCT coefficients throughout all stages of 
quantization. The distribution of the DCT coefficients of 
images is assumed to be Laplace [6], defined by:  

      ( ) 0.5 xp x e λλ −= .                          (5) 
 

The bit-rate and distortion analysis that follows can be easily 
generalized to other data types of one-, two- and three-
dimensions. The indices (u,v) denoting the position of the 
DCT coefficient in the image can be replaced with 1D or 3D 
notations, respectively, and the re-quantization of 1D signal 
samples or 3D voxels could be analyzed similarly. The only 
additional information needed is on the PDF (probability 
density function) of the DCT coefficient xu,v and on the 
structure of the UTQ used. In the rest of the paper, the indi-
ces are therefore omitted for convenience.     
 
3.1 Bit-rate Analysis 

 
The bit-rate of the re-quantized image coefficients is esti-
mated using the entropy, defined by 

   ( ) (2, 2 2,log )j j
j

H p r p r
∞

=−∞
= − ∑ ,                     (6) 

where r2,j is the representation level of quantization bin j of 
the second stage quantizer. 

First, to estimate the PMF (Probability Mass Function) 
of the DCT coefficients after first stage quantization, the 
probability weights of each quantization bin of the first stage 

quantizer are calculated. For quantization step q and positive 
values (symmetrical for the negative values), the probability 
weight wj of bin j of the first stage quantizer is expressed as: 

 

       
( )
( ) ( ) (0.5 0.5

0.5
10.50.5j

j q j q )x q
j q

w e dx e λλ λλ
+ − −− −
−

= =∫ e− .    (7) 

 

The entropy of data re-quantized with Q2 and Q2,ref was 
derived as a function of the integer factor k, as defined in (4). 
Note that for odd values of k both the rate and the distortion 
performance of Q2 and Q2,ref  is the same. This happens be-
cause when k is odd, all decision levels of the second stage 
quantizer coincide with some decision levels of the first stage 
quantizer, as shown in (8) below and in more detail in [4]. 

 

   

{ } ( )

( ) ( )( )
2 1 1

(*)

2, 2 1 1 1,

2, 1,

(*) 2 1

0.5 2 1 0.5

:

m l

l

m l

q kq k odd s q

d m q m s s q q d

m l d d

= = = +

= − = + − − =

⇒∀ ∃ =

   (8) 

 
The entropy expressions were derived separately for odd 

and even values of k. The expression for entropy (measured 
in bits/pixel) are shown in Table 1 and plotted in Fig. 2, as a 
function of k. The first stage quantization step size used for 
the plot is q1= 10   and the parameter λ is set to 0.1, a suit-
able value for typical images [6]. 

It can be seen that for re-quantization, a much steeper 
decrease in entropy occurs when k is even. This shows that 
better compression can be achieved at these points. This hap-
pens due to the position of second stage decision levels rela-
tive to first stage decision levels in a way that causes more 
probability weights to merge together as a result of re-
quantization. This drastically decreases the entropy.  

When comparing to the direct quantization curve, it can 
be observed that for the even k values, the entropy is smaller 
for re-quantization. At the odd values, as expected, the en-
tropy of the re-quantized data is equal to that of the data 
quantized once with the coarse reference quantizer. 

These entropy expressions allow estimating the bit rate 
of the re-quantized image for various values of q2, without 
actually performing the re-quantization repeatedly. 
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3.2 Distortion Analysis 
 

The distortion of re-quantized DCT coefficients is based on 
the Laplace distribution in (5) and is defined as: 
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 distortion is evaluated as a function of k, separately fo

    .     (9) 

The r 
odd and even values. As before, for odd values of k, the dis-
tortion for re-quantization and direct quantization is the 
same. Distortion expressions appear in Table 2 and are plot-
ted in Fig. 3, as a function of k.  Once again, q1= 10 and 
λ=0.1. It can be observed that for re-quantization, a much 
steeper increase in distortion occurs when k is even and at 
these points it is higher than the distortion of the direct 
quantizer.  This means that when re- quantizing with an even 
multiple of the original quantization step, additional distor-
tion (comparing to direct quantization) is inevitable, whereas 
for the odd multiples, both re-quantization and direct quanti-
zation cause the same distortion. In addition, as k increases, 
the distortion for re-quantization and direct quantization 
converges to the same value. This is caused by the growing 
probability weight of the zero quantization bin 
[ ]1 10.5 ,0.5kq kq− , which increases according to:              
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Since this bin is quantized to zero in both cases, when 
1zero binP − ≈ , the distortion for direct quantization and re-

quantization converges to the same value. It can be easily 
shown that for , which explains the 
close values in Fig. 3, for both methods. Similar behaviour 
can be observed in Fig. 2, for the entropy.  

10, 1zero bink P −> ≈

 
3.3 Rate-Distortion Functions 

 
The developed rate and distortion expressions are used to 
analyze the performance of the second stage quantizer.     
Fig. 4 shows rate vs. distortion. It can be seen that re-
quantization performs better than direct quantization at some 
areas of the curve. In addition, there are areas of the re-
quantization curve where moving towards substantially 
higher distortion does not substantially reduce the rate. For 
instance, when moving right from D≈85 to D≈100, the rate 
remains R≈1.3 bit per pixel. This means that there are some 
re-quantization step sizes that will cause a larger distortion 
without reducing the rate. Clearly such re-quantization steps 
are best avoided. Experimental results validating these no-
tions are presented next. 
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Table 1: Entropy of re-quantized Laplace PDF 
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Table 2: Distortion of re-quantized Laplace PDF
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Figure 3: Theoretical distortion of re-quantized Laplace PDF 
originally quantized with q1 = 10, as a function of k= q2/ q1 for re-
quantization and for direct quantization.         

4. EXPERIMENTAL RESULTS  S  

Simulations were conducted on typical images, using various 
q1 and q2. The 'Man' image presented in Fig. 5 (top) was ini-
tially quantized with q1=15 and then re-quantized. The mid-
dle image shows 'Man' after re-quantization with  q2=29 and 
the bottom image in Fig. 5 shows 'Man' after re-quantization 
with a slightly coarser re- quantization step of   q2=30=2·q1. 
It can be easily observed that the bottom image in Fig. 5 
(q2=30) looks much better than the middle one (q2=29). 
There is less noise and the uniform areas of the image appear 
to be much smoother. Also quantitatively, despite the coarser 
re-quantization step used in the bottom image, its PSNR is 
higher by approximately 1.5 dB. Moreover, the compression 
ratio of the image re-quantized with q2=30 is much higher 
than the compression ratio of the image re-quantized with 
q2=29 (note that the bit-rate is more than two times lower). 
This behavior can also be observed in Fig. 6, showing the 
rate as function of q2, for initial quantization with q1 = 10. 
Obviously, at even multiples of the original quantization step, 
the rate decreases dramatically, as theoretically observed in 
3.1. Fig. 7 shows the distortion (MSE) as a function of q2. It 
can be observed that the local minimum is at odd multiples 
(when q2=30=3·q1 and q2=50=5·q1 ). However, the maximal 
distortion is achieved one step before the even multiples, 
which allows using the even multiples at relatively low dis-
tortion. This is due to the rounding method used [4].    

Simulations were conducted on typical images, using various 
q1 and q2. The 'Man' image presented in Fig. 5 (top) was ini-
tially quantized with q1=15 and then re-quantized. The mid-
dle image shows 'Man' after re-quantization with  q2=29 and 
the bottom image in Fig. 5 shows 'Man' after re-quantization 
with a slightly coarser re- quantization step of   q2=30=2·q1. 
It can be easily observed that the bottom image in Fig. 5 
(q2=30) looks much better than the middle one (q2=29). 
There is less noise and the uniform areas of the image appear 
to be much smoother. Also quantitatively, despite the coarser 
re-quantization step used in the bottom image, its PSNR is 
higher by approximately 1.5 dB. Moreover, the compression 
ratio of the image re-quantized with q2=30 is much higher 
than the compression ratio of the image re-quantized with 
q2=29 (note that the bit-rate is more than two times lower). 
This behavior can also be observed in Fig. 6, showing the 
rate as function of q2, for initial quantization with q1 = 10. 
Obviously, at even multiples of the original quantization step, 
the rate decreases dramatically, as theoretically observed in 
3.1. Fig. 7 shows the distortion (MSE) as a function of q2. It 
can be observed that the local minimum is at odd multiples 
(when q2=30=3·q1 and q2=50=5·q1 ). However, the maximal 
distortion is achieved one step before the even multiples, 
which allows using the even multiples at relatively low dis-
tortion. This is due to the rounding method used [4].    
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zation and re-quantization, averaged for 7 different images,  
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using q1 = 10 and λ = 0.1, as in the theoretical analysis. The 
behaviour of the curves is quite similar to the theoretical. 
Clearly there are intervals where re-quantization outperforms 
direct quantization (this happens at the even values of k) and 
there are undesired re-quantization steps that increase distor-
tion without decreasing the rate significantly.   
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5. CONCLUSIONS 5. CONCLUSIONS 

A re-quantization method for recompression of images in the 
DCT domain has been analyzed from a rate-distortion point 
of view. The process of re-quantization involves selection of 
the second stage quantization step. To avoid added distortion 
due to re-quantization, it is proposed to select the re-
quantization step as an even multiple of the original quantiza-
tion step [2], [3].  

A re-quantization method for recompression of images in the 
DCT domain has been analyzed from a rate-distortion point 
of view. The process of re-quantization involves selection of 
the second stage quantization step. To avoid added distortion 
due to re-quantization, it is proposed to select the re-
quantization step as an even multiple of the original quantiza-
tion step [2], [3].  

The efficiency and the performance of the proposed 
method have been evaluated based on the obtained bit-rate, 
MSE and the visual quality of the recompressed images. We 
have shown in our theoretical analysis that the bit-rate of the 
re-quantized image decreases significantly when the re-
quantization step is an even multiple of the original step size.  

The efficiency and the performance of the proposed 
method have been evaluated based on the obtained bit-rate, 
MSE and the visual quality of the recompressed images. We 
have shown in our theoretical analysis that the bit-rate of the 
re-quantized image decreases significantly when the re-
quantization step is an even multiple of the original step size.  

On the other hand, the MSE is minimized at odd multi-
ples of the original quantization step size and increases at 
even multiples. However the visual quality obtained at even 
multiples is still much better than for other (not integer mul-
tiples of original quantization step) re-quantization steps.  
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ples of the original quantization step size and increases at 
even multiples. However the visual quality obtained at even 
multiples is still much better than for other (not integer mul-
tiples of original quantization step) re-quantization steps.  

This work has introduced a rate-distortion function for 
image re-quantization. Even though developed for the 
Laplace distribution of the DCT coefficients of 2D images 
and the midtread quantizer, this work could be readily gener-
alized to other dimensions [7]. For 2D images, our conclu-
sion is that the most efficient re-quantization is achieved by 
selecting the re-quantization step as an even multiple of the 
original quantization step and rounding the re-quantized co-
efficients towards zero. The rate and distortion of the re-
quantized image could be estimated offline, thus improving 
currently available recompression systems, including real-
time applications. 
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sion is that the most efficient re-quantization is achieved by 
selecting the re-quantization step as an even multiple of the 
original quantization step and rounding the re-quantized co-
efficients towards zero. The rate and distortion of the re-
quantized image could be estimated offline, thus improving 
currently available recompression systems, including real-
time applications. 

  
ACKNOWLEDGEMENT This work was supported in part   
by the Ollendorff Minerva Centre. Minerva is funded through 
the BMBF. 

ACKNOWLEDGEMENT This work was supported in part   
by the Ollendorff Minerva Centre. Minerva is funded through 
the BMBF. 

      

  
Figure 2:  Theoretical entropy of requantized Laplace PDF 
initially quantized with q1 = 10, as a function of k=q2/ q1, for 
re-quantization and for direct quantization.         
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Figure 4: Theoretical rate vs. distortion for re-quantized Laplace 
PDF, initially quantized with q1 = 10. As can be seen, there are 
points where re-quantization outperforms direct quantization and 
intervals where the slopes of the curve change significantly. 
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Figure 7: Distortion as a Function of q2, for q1=10 

Figure 8: Rate vs. distortion, averaged for7 re-quantized images, after initial uni-
form quantization with q1=10. Rate-distortion behaviour is similar to that of theo-
retic rate-distortion shown in Fig. 4.         

Figure 6: Rate as a function of uniform re-quantization step q2, for q1=10, averaged 
for 7 images. Note the substantial rate decrease at q2=2·q1=20 and q2=4·q1=40, i.e., 
at even multiples, according to the theoretical analysis. 
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Figure 5 (on the left): The 'Man' image, initially quantized with q1 =15, then re-
quantized .Top: Original image. Middle: Re-quantized with q2=29, obtaining PSNR 
of 30.54dB, at 1.18 bit/ pixel. Bottom: Re-quantized with q2=30, with PSNR= 32.1 
dB, at 0.54 bit/pixel.  As can be seen, the bottom image outperforms the middle one, 
both visually and quantitatively.

Figure 7: MSE as a function of q2, for q1=10, averaged for 7 re-quantized images. 
Note that MSE is equal for both methods at q2= 30 and q2= 50, also there is signifi-
cant added distortion due to re-quantization at q2=20, 40 and 60. Still, the local 
distortion peaks occur at q2=19, 39 and 59.
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