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ABSTRACT 
Detecting abnormalities in the heart motion using ultrasound 
can be a major diagnostic tool, since reduced wall motion 
has correlation with ischemic muscle action. Having 
analyzed such ultrasound scans, it can be shown that the 
relevant tissue pattern is varying and its motion consists of 
expansion and contraction in addition to tissue deformations. 
Accordingly, we introduce a new approach and algorithm to 
detect and track tissue deformation using multiple 
hypotheses logic, based on block motion estimation that 
accounts for tissue expansion and contraction. Our proposed 
algorithm has been applied to in-vivo 2D scans of the left 
ventricle, providing useful results for the characterization of 
heart functionality.  

1. INTRODUCTION 

        For patients presenting with chest pain, rapid diagnosis 
of Acute Myocardial Infarction (AMI) is important for 
further management and possible salvage of the myocardial 
tissue. Ultrasound is an important adjunct to the well-
accepted diagnostic tools such as ECG and serum enzymes, 
especially when the other predominant signs are missing or 
ambiguous. Wall motion abnormality is the earliest 
symptom of a nearing AMI, however, specific pattern 
analysis is needed to classify the situation correctly. 
        Ultrasound scans of the heart at high frame rates are 
widely available today and used to diagnose various heart 
diseases. Detecting abnormalities in the wall motion has 
become of major importance since reduced motion has 
correlation with an ischemic muscle action. Automatic 
movement tracking of the heart walls and calculating their 
local velocities [8] can make the diagnoses more accurate 
and useful. 

Estimating local velocities in ultrasound scans presents 
several challenges  [3],  [10]. The major difficulty is that 
ultrasound images have high Rayleigh governed speckle 
noise and Gaussian distributed electronic noise, resulting in 
a low signal to noise ratio (SNR). In addition, the tissue 
pattern is fast changing and its motion includes expansion 
and contraction in addition to rotation and translation. 
There is also a problem of 'out of plane motion' found in 2D 
scans causing inconsistency in object motion. The 
resolution of the images depends on the ultrasound 

equipment and it usually has high axial resolution and low 
angular resolution.  

The approach introduced in this work significantly 
improves the algorithm presented in  [3]. The new features 
of the new algorithm are detection and tracking of tissue 
expansion and contraction. It also has the advantageous 
features of multiple scan correlation and recursion that 
allows usage of later measurements for decision on 
previous measurement associations. This way we are able 
to detect and track tissue deformation based on complete 
information and not on scan-to- scan basis, providing far 
more accurate results.   

2. THE PROPOSED ALGORITHM 

We start with a general description of the new approach. 
The flowchart of the derived algorithm is shown in Fig. 1. 
 
2.1. Data Acquisition 

In this work we use B-mode scans of the left ventricle 
to test the proposed algorithm. We show two scans from 
two different patients. The first set (Fig. 2a) was sampled at 
51 frames per second with depth increment of 0.33mm and 
angular increment of 0.0041º. The second set (Fig. 2b) was 
sampled at 76 frames per second with depth increment of 
0.34mm and angular increment of 0.01º. The algorithm is 
applied directly to the data without any modifications or 
transformations. 

Tissue pattern of the heart varies fast and its motion 
contains contraction and expansion, as can be seen in 
ultrasound scans shown in Fig.2. Thus any assumption that 
the objects undergo only small changes from frame to 
frame is usually incorrect in ultrasound scans of the heart, 
despite the high frame rate and must be of concern.  

 
2.2. Maximum likelihood Criteria 

We represent two consecutive scanned volumes by X 
and Y. Let ( )iI x  be the intensity of a macro block at 

coordinates { }i ijx x X= ∈  and ( )iI y  be the intensity of 

a macro block at coordinates { }i ijy y Y= ∈ , where i 

represents all possible macro blocks and j is the second 
coordinate within the macro block. Let { }i i iv x y= −  be 
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the displacement vector between the two macro blocks ix  

and iy . Based on the above notations, the maximum 
likelihood (ML) estimation based on  [2] and  [4] is: 
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There are several models describing ultrasound images with 
either multiplicative or additive noise. A common model 
that was used in this work assumes multiplicative Rayleigh 
distributed noise with distribution function given in  [4]: 
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We denote the noiseless value of pixels in macro block i by 

ijs . Assuming statistically independent noise, the model for 
pixels in the macro blocks is 

)3(                       
,

x
ij ij ij

y
ij ij ij

x s

y s

η

η

=

=
                  

where x
ijη  and y

ijη  are two independent noise elements 
with Rayleigh distribution. Using (3), we obtain: 
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ijη  is a division of two independent noise elements with 
Rayleigh distribution given in (2), having the following 
distribution  [6]: 
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The probability function for this distribution is  [4]: 
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and its maximization is equivalent to the maximization of 
(1). 
Taking the natural logarithm of both sides of (4), we obtain 
the following model: 
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Accordingly, the probability function as in Equation (6) is 
given by  [6]: 
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This probability function is used in this work for motion 
estimation, as described next. 
 
2.3. Motion Estimation (ME) 

The motivation for using ME is to trace the movement 
of objects from one ultrasound frame to the next. Each 
block in the current frame X is compared with the 
corresponding block at the same coordinates and its 
neighbors in the following frame Y.  

We use an Exhaustive Search (ES) algorithm or Full 
Search for finding the best match [9]. The algorithm 
searches in all possible locations within the search window. 
In this work the search window consists of only non 
overlapping macro blocks in the neighborhood of the 
corresponding macro block: 
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 This approach reduces drastically the search options 
thus increasing the speed of the ES, but more importantly, 
allows implementation of the Multiple Hypotheses Tracking 
(MHT) method by limiting the number of possible 
hypotheses. 

 This limited search window may increase the errors in 
the best match search, but on the other hand it eliminates 
the need for searching for the nearest displacement vectors 
and the associated errors when building hypotheses. The 
cost function used to define the best match is the maximum 
likelihood criterion defined in (8). All displacement vectors 
in the search window are kept with their maximum 
likelihood value representing the probability of 
displacement to the particular location the current macro 
block can move to. 

The output of ME function is a display of all the 
displacements in terms of pixels of each macro block of the 
current frame in each of the dimensions along with their 
respective probabilities.      
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Figure 1 – Flowchart of the proposed algorithm. 

This is different from the traditional usage of ME, 
where only the best match (highest probability) 
displacement is used because in this application we wish to 
detect tissue expansion and contraction. Tissue expansion is 
characterizes by several matches in the same search 
window having the highest probability. When tissue 
contraction occurs, several displacement vectors with 
highest probability from neighboring macro blocks have 
their ending at the same macro block. Therefore, we 
consider all possible displacement and make the decision at 
a later stage when the complete (or large enough) motion 
history is available.        

The ME is calculated only for macro blocks that are 
above the mean noise level. This level is calculated here as 
an average value of 1000 samples taken randomly from the 
scanned volume [7]. We based this value on an assumption 
that the scanned tissue occupies only a small part of the 
volume and the rest of it is noise, as can be seen in Fig. 2. 
By doing so we reduced the number of calculations as well 
as the number of false hypotheses caused by apparent 
movements of macro blocks that do not contain tissue 
information.  

The process is repeated for all the scans. The 
displacement vectors are used to build hypotheses of the 
tissue movement as described next. 

 
2.4. Multiple Hypothesis Method 

Estimation of displacement vectors of different macro 
blocks is not sufficient when the purpose is detecting tissue 
deformation. If we wish to diagnose tissue condition, we 
have to examine the movement for a prolonged period of 
time, or literally track its behavior.   

To achieve this goal, we use Multiple Hypotheses 
Method (MHT). MHT is a deferred decision logic in which 

alternative data association hypotheses are formed 
whenever there are observation to track conflict situations 
 [1]. The hypotheses are propagated through the scans 
assuming that subsequent data will resolve the uncertainty. 
In this work hypotheses oriented approach that 
continuously updates the hypotheses by expanding and 
pruning was used [11].  

 The hypotheses were created by connecting sequential 
displacements of each macro block. With every consecutive 
frame, as new data is received, the number of hypotheses 
grows and pruning is required. Pruning removes the most 
unlikely hypotheses and is required to limit the number of 
hypotheses and reduce the computation and memory 
requirements. It is performed periodically.  

We applied the hypothesis generating technique 
presented in  [8] to the ultrasound data. Let 

( ) ( ){ }, 1,2, ,nV m V m n N= = … denote the set of 
displacement vectors in scan m, 

( ) ( ) ( ){ }1 , 2 , ,mV V V V N= … denote the cumulative 
set of displacement vectors up through the scan m and  

{ }, 1,2, ,m m
j mj JΦ = Φ = …  denote the set of all 

hypotheses at frame m that associate the displacement 
vectors to the hypotheses. After a new set of displacement 
vectors ( )1V m + is calculated using ME, a new set of 

hypotheses 1m+Φ  is repetitively built for each prior 
hypothesis m

jΦ and each of the new displacement 

vectors ( )1nV m + .  

The probability of hypothesis m
jΦ given the 

displacement vectors up through scan m is denoted m
jP and 

is given by: 
)10(              ( )| .m m m

j jP P V= Φ              

Let ( )| ,m m m m
i i i ip x y ν denote the probability of a 

displacement vector m
iν in the hypothesis m

jΦ . m
jP is 

defined as a cumulative probability of all displacement 
vectors m

iv in the hypothesis m
jΦ and can be written as  [6]: 
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The hypotheses are evaluated at the final frame by 
computing hypothesis scores that is defined as a cumulative 
probability. For each starting block in the initial frame, a 
hypothesis (track) having the highest cumulative 
probability m

jP  is chosen. This way tissue movement is 
examined through all the scans based on the best 
hypotheses that are chosen after all the information is 
available, instead of best match on a frame-to-frame basis 
that does not necessarily provide the best results. 
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2.5. Tracking Tissue deformation 
Tissue contraction is detected when two or more 

hypotheses with the highest value of the cumulative 
probability m

jP  have a common displacement 

vector ( )nV m . In our algorithm a single displacement 
vector can be associated with more than one hypothesis. 
This way, by merging common displacement vectors mV  
of different hypotheses we can account for tissue 
contractions that occur in the fast varying tissue pattern. 
This assignment logic causes hypothesis merging through 
the scans and continuous reduction in the number of 
hypotheses with common displacement vectors. The 
hypotheses may have a number of common displacement 
vectors through a number of scans.  

Tissue expansion naturally creates multiple hypotheses 
from a single one, all of them having the highest value of 
the cumulative probability m

jP . These hypotheses have a 

common source ( )nV m  at any frame and can split more 
than once through the scans.  

Although it is possible to detect and track tissue 
expansion and contraction on a single scan to single scan 
basis, MHT dismisses by pruning incorrect expansions and 
contractions that can be produced by ME, as described in 
Section 2.3, thus making the process more accurate. 

The maximum likelihood value of displacement 
vectors that belong to the same expansion or contraction 
instance may not be precisely equal due to presence of 
noise and additional tissue deformations. Hence, some 
flexibility is needed the selection of most likely hypotheses. 
By setting a threshold for the cumulative probability and 
selecting splitting or merging hypotheses according to this 
threshold, we allow detection and tracking of tissue 
expansions in the presence of noise and additional tissue 
deformation.  

3. RESULTS 

The new algorithm has been tested on in-vivo scans of 
the left ventricle of the human heart to detect and track 
tissue expansion and contraction during the scans. Here we 
use 2D scans for easier presentation, but this new algorithm 
can be easily generalized to 3D. The scans were divided 
into macro blocks of 9×9 pixels. Hypotheses pruning was 
performed every second scan, leaving the 2% of the most 
likely hypotheses for each initial macro block in the first 
scan that passed the noise threshold. The threshold for 
tissue expansion and contraction was set empirically. In 
Fig. 2 we show movements from frame to frame that belong 
to hypotheses where tissue expansion or contraction was 
detected at least once during the scans. These hypotheses 
have the highest cumulative probability m

jP  as described in 
Section 2.4. The calculated movements from frame to 
frame are represented by a single arrow. 

The average time to processes a single frame on AMD 
Athlon™ 3000+ computer with 1GB of RAM was 11 
seconds. 

4. CONCLUSIONS 

Tissue deformation detection and tracking using a Multiple 
Hypotheses approach with motion estimation and 
maximum likelihood criteria has been proposed. Our test 
results using in-vivo data show that this method can be used 
for ultrasound scans in order to analyze tissue 
characteristics with emphasis on contraction and expansion 
for prolonged period. This universal approach is suitable for 
practical use in ultrasound scans of various types of tissues, 
including the myocardium, as in this case. The complexity 
of the proposed algorithm is low and is very suitable for 
parallel computing, making it instrumental for real-time 
classification of AMIs.  

ACKNOWLEDGEMENT This work was supported in 
part   by the German-Israeli Foundation (GIF), by the H & 
R Sohnis Cardiology Research Fund, and by the Ollendorff 
Minerva Centre. Minerva is funded through the BMBF. 

REFERENCES 

[1] S. Blackman and R. Popoli, “Design and Analysis of 
Modern Tracking Systems”, Artech House 1999. Ch 6. 

[2] D. Boukerroui, J.A. Nobble and M. Brady, "Velocity 
Estimation in Ultrasound Images: a Block Matching 
Approach", Info. Processing in Medical Imaging, 2003. 
pp. 586-598. 

[3] E. Braiman and M. Porat, "On 3D Tracking for 
Echocardiographic Classification of Acute Myocardial 
Infarction", EUSIPCO 2007. 

[4] B. Cohen and I. Dinstein: "New Maximum Likelihood 
Motion Estimation Schemes for Noisy Ultrasound 
Images", Pattern Recognition 35, 2002, pp. 455–463. 

[5] C. Kotropoulos, X. Magnisalis, I. Pitas, M.G. Strinzis, 
"Nonlinear Ultrasonic Image Processing Based on 
Signal-Adaptive Filters and Self Organizing Neural 
Nets", IEEE Trans. Image Process. 3 (1), 1994, pp. 65–
77. 

[6] A. Papoulis, "Probability, Random Variables and 
Stochastic Processes", McGraw-Hill, New York, 1991. 

[7] M. Porat and Y.Y. Zeevi "Localized Texture 
Processing in Vision: Analysis and Synthesis in the 
Gaborian Space", IEEE Trans. on Biomedical Eng., 
(BME) 36:11, 115-129, 1989. 

[8] D. B. Reid., “An Algorithm for Tracking Multiple 
Targets”, IEEE Trans. on Auto. Control, Vol. 24, 1979, 
pp. 843-854. 

[9] D. Salomon, "Data Compression" 3rd ed., Springer-
Verlag New York, 2004. Ch. 6.4. 

[10] A. Thrush and T. Hartshorne, "Peripheral Vascular 
Ultrasound", 2nd Ed., Elsevier, 2005. Ch. 2.  

[11] S. Urieli, M. Porat and N. Cohen, "Optimal 
Reconstruction of Images from Localized Phase", 
IEEE Trans. on Image Processing, Vol. 7, No. 6, pp. 
838-853, 1998. 

2375



 
Frame no. 1 Frame no. 2

Frame no. 3 Frame no. 4

 
(a) 

Frame no. 1 Frame no. 2

Frame no. 3 Frame no. 4

 
(b) 

Figure 2 – Four consecutive in-vivo scans with displacement vectors from two patients. Each image presents a single scan with 
displacement vectors to the following scan. Only displacement vectors that belong to hypotheses that include expansion contraction are 
displayed.  
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