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ABSTRACT

We propose a novel Bayesian formulation for the recon-
struction from compressed measurements. We demonstrate
that high-sparsity enforcing priors based on [,-norms, with
0 < p <1, can be used within a Bayesian framework by
majorization-minimization methods. By employing a fully
Bayesian analysis of the compressed sensing system and
a variational Bayesian analysis for inference, the proposed
framework provides model parameter estimates along with
the unknown signal, as well as the uncertainties of these es-
timates. We also show that some existing methods can be
derived as special cases of the proposed framework. Experi-
mental results demonstrate the high performance of the pro-
posed algorithm in comparison with commonly used meth-
ods for compressed sensing recovery.

1. INTRODUCTION

Compressed sensing (CS) proposes new techniques to ac-
quire signals from a reduced number of samples. The the-
ory of CS indicates that, if a signal is compressible in some
basis, i.e., most of the energy of the coefficients in that ba-
sis is concentrated in relatively few coefficients, then high-
accuracy recovery is possible even with fewer samples than
the dimension of the signal [1]. Thus, the traditional sens-
ing and compression phases of signal acquisition are merged
into a single phase. The traditional decoding is replaced by
recovery algorithms making use of the compressibility as-
sumption.

During the last years, many recovery algorithms for com-
pressed sensing problem have been proposed. A main class
of algorithms is based on /; minimization via linear pro-
gramming [1, 2, 3]. Another alternative is minimizing Iy-
norms, either approximated by smooth functions (e.g., [4]),
or directly utilized by iterative hard-thresholding methods
[5]. Also, greedy methods have been widely proposed [6, 7],
which approximate the signal by incrementally selecting the
bases best describing the part not yet represented. These
methods are computationally more efficient than global op-
timization methods, but generally at the expense of a de-
creased reconstruction accuracy. Finally, minimization of
non-convex /,-norms (0 < p < 1) has been shown to provide
a potentially better recovery than /; norms [8]. These al-
gorithms are known as iteratively re-weighted least squares
(IRLS) methods. Early work on IRLS methods utilized /,
norms with p > 1 [9, 10], and extensions to non-convex opti-
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mization frameworks were proposed in [11, 12, 13]. A simi-
lar re-weighting approach is utilized for /;-norms in [14].

A main issue of these methods is that the physical mean-
ing of the model parameters is generally obscure. Recently,
several algorithms have been developed within the Bayesian
framework [15, 16, 17], with the advantage of systematic
modeling of the unknown signal along with the model pa-
rameters, which results in fully-automated algorithms simul-
taneously estimating all required parameters. However, an-
alytical difficulties within Bayesian inference limit the class
of sparsity priors to Gaussian-based priors [16]. Those meth-
ods utilizing a more general class of sparsity priors generally
resort to sampling algorithms for inference [18], which are
generally computationally less efficient.

In this paper, we propose a novel Bayesian frame-
work for CS recovery using non-convex [,-norms. With
a majorization-minimization approach, we demonstrate that
Bayesian inference can be performed without resorting to
sampling approaches. Specifically, we employ a variational
Bayesian inference which provides distribution estimates of
the unknowns, and therefore allows the calculation of the
uncertainties of the estimates. The proposed algorithm si-
multaneously optimally estimates the unknown signal along
with all needed parameters. We also show that existing IRLS
methods are special cases of the proposed formulation. Fi-
nally, we demonstrate with experimental results that our al-
gorithm compares favorably to commonly used CS recovery
algorithms.

2. BAYESIAN MODELING

The CS acquisition system can be modeled as

y=®x+n, (1)
where x is a N x | sparse vector, y is the M x 1 observa-
tion vector, n is the M x 1 independent, Gaussian, zero-mean
noise vector with variance equal to 87!, and ® is the M x N
measurement matrix, with M < N. A general form of the
reconstruction problem is given by

@)

% = argmin{||y — x3 + x|},
X

where p is generally chosen to be within the interval [0,2].
We utilize a hierarchical Bayesian framework to model the
components of the compressed acquisition system in (1). We
first define the joint distribution p(x, @, 8,y) of all unknown
and observed quantities, which we factorize as

p(x, o, B,y) =p(y[x,B)p(x|a)p(a)p(B). 3)
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In the first stage, the observation noise is modeled us-
ing the conditional distribution p(y|x, ) and the unknown
signal x is modeled by a sparsity prior p(x|a). These distri-
butions depend on model parameters 8 and a, called hyper-
parameters, which are modeled in the second stage through

hyperpriors p(o) and p(f3).

2.1 Observation and signal model

We model the conditional probability p(y|x, ) as

plyixp)<Blew|-Bly-axif]. @

The signal is assumed to be sparse, which is modeled using
a Generalized Gaussian prior given by

Zx(la) xp l_an"'P] )

&)

p(x|e) o<

with Z,(o) the partition function normalizing the distribu-
tion. The partition function Z,(a) can be calculated using

1

“ 1 [ 1-p _1
/ exp[—au’]du = */ expl—av]y 7 dvec o7,
0 pJo

N
with u? = v, which results in Z,(a) = ca », with ¢ a con-
stant. The final form of the sparsity prior is given by

N
p(xa) = ca’ exp [—azwl . ©)
]

Note that this probability distribution uses a single hyper-
parameter o for all signal coefficients, whereas existing
Bayesian methods generally employ independent distribu-
tions on each signal coefficient [15, 16, 17], where each dis-
tribution is modeled using a separate hyperparameter. How-
ever, as will be shown in Sec. 3, we introduce an additional
variable which will separately enforce adaptivity for each co-
efficient. Note also that a maximum a posteriori (MAP) for-
mulation with the distributions in (4) and (5) results in the
same inverse problem shown in (2), using 7 = %.

2.2 Model for hyperparameters

In order to simplify the inference procedure, in Bayesian
models, hyperprior distributions are generally chosen to be
conjugate distributions, i.e., they have the same form as the
product of the conditional distribution and the priors. There-
fore, we utilize conjugate Gamma hyperpriors on both hy-
perparameters o and f. In addition to being conjugate, the
Gamma distribution includes the uniform distribution as a
limiting case, in which case the hyperparameters are esti-
mated only depending on the observations. The distributions
p(a) and p(f) are then expressed as

ple) = el = PP o lexp st (1)
BB,
p(B) =T(Blag,bp) = (Ffa)% ) B exp [—ﬁb%] , (®)

with a9, a% the shape parameters and 5%, b% the scale pa-

rameters, respectively. In this work, these parameters are as-
signed small values (e.g., 10~?) to obtain vague hyperpriors
which make the hyperparameter estimates to rely more on
the observations than on prior knowledge. The means and
variances of a and 8 are given respectively by

Mean[a| = <a> = Z—a, Var[a] = (baa)z 9
ap ap

M - — 2 varlg] = .0

ean[f] = <f> bs ar[B] 05)° (10)

Combining the distributions at both stages of the hierarchi-
cal model defined in (4), (5) and (7)-(8), we obtain the joint
distribution in (3).

3. INFERENCE PROCEDURE

The Bayesian inference is based on the posterior distribution

plaB.xy)

11
p(y) (an

p(avﬁvx‘y) =

However, approximation methods are needed because p(y)
cannot be computed. In this work, we incorporate
a variational Bayesian approach for the inference (as
in [19, 20, 21]), which approximates the posterior distri-
bution p(c, B,x|y) by an analytically tractable distribution
q(a, B,x), found by minimizing the Kullback-Leibler (KL)
divergence between the posterior distribution and its approx-
imation, given by

Cr(a(e, B,x) [ p(e, B, x]y))

:///q(a,ﬁ,x)log (m)dadﬁdx

_ ///q (a,B,x IOg( (((xaﬁﬁx ;)) dadBdx + const.
(12)

The KL divergence is always non negative and equal to zero
only when q(a, B,x) = p(a, B,x|y). Itis generally assumed
that the distribution q(a, 3,x) can be factorized. In this work
we use the following factorization

q(a, B,x) =q(a)q(B)q(x)

Unfortunately, the KL divergence in (12) cannot be calcu-
lated with the sparsity prior in (6). Therefore, we resort to
a majorization-minimization approach, where we search a
bound of the prior which can be used for further Bayesian
analysis. Let us consider the weighted arithmetic and geo-
metric mean inequality given by

13)

a?b' "t < §a+(1 — B)b,

: (14)

with 0 < p <2, and nonnegative numbers a and b. Assuming
b >0, p > 0 and dividing both sides by b'~% we obtain

S

2—p
a-+ —b
P
- 15
<3 (15)

bl- p/2
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Let us also define the following functional

2 p

. ap Vi
M(o,x,v) =car expl Z( Ik p/z )] ,

(16)
where v € (RT)" is a vector with components v;, and ¢ is
the constant in (6). Using (15) with a = (x;)? and b = v; in
M(a,x,v), and comparing it with the prior in (6), it is clear
that

p(xla) = M(a,x,v). a7

Since the bounding functional M(a,x,v) has a quadratic
form, Bayesian inference can analytically be carried out by
majorizing the prior p(x|a) by this functional. Using (17), a
lower bound of the joint probability distribution in (3) can be
found, that is,

p(a, B,x,y) > p(a)p(B) M(a,x,v) p(
=F(a,B,x,v),

y[x,B)
(18)

which leads to the following upper bound of the KL diver-
gence in (12)

CKL(q(a,ﬁ,X) || p(avﬁvx‘y))
<Ckr(q(a,B,x) || F(a, B,x,v)) + const. (19)
Note that, since
CKL(q(a ﬁ,X) || p(a,ﬁ,Xb’))
<minCgr(q(c,B,%) | F(o,B,x,v))+const,  (20)

the upper bound Ck.(q(a, 3,%) | F(a, B,%,V)) can be made
tighter by minimizing it iteratively with respect to both
q(a,B,x) and v, which results in a decreasing sequence of
upper bounds, and also in closer approximations of the signal
prior p(x| ) by the bounding functional M (o, x,v).

Based on this, we replace the minimization of the KL
divergence in (12) by its upper bound given in (19). Note,
however, that (19) cannot be analytically minimized with re-
spect to all q(-) distributions and the vector v at the same
time, and so an alternating minimization procedure has to be
employed as follows. Let us denote by ® = {x, a, 3} the set
of all unknowns, and by ®¢ the set ® with 8 removed. Then,
for each unknown 6 € @, the posterior q(6) can be computed
by holding q(®g) constant and solving

q(6) = arz%(r;incm(q((@e)qw) I F(a,B,x,v)).
q

1)
The standard solution of variational Bayesian analysis [21,
19] can then be used for (21), which results in

q(8) = const x exp (Eq(g,) [ logF(at, B,x,v)]), (22)

where
Ey 0, [ 10gF(at, B,x,v)] = /1ogF(a,ﬁ,x,v)q(®9)d@9.

Applying this general solution to each unknown in an alter-
nating fashion results in an iterative procedure, which con-
verges to the best approximation of the true posterior distri-
bution p(x, ¢, B|y) by distributions of the form q(c, B,x) =

q()q(B)q(x). Convergence is guaranteed since the upper
bound of the KL divergence in (20) is convex.

We next proceed to give the explicit forms of each q(-)
distribution. In what follows, the means of the distributions
will be denoted by <> = Egg)[], when the correspond-
ing distribution is clear from the context. The distribution
q(x) is calculated from (22) as a N-dimensional multivari-
ate Gaussian distribution .4 (x|<x>,X), whose mean and
covariance are given by

<x> =X, <f>Py, (23)
Ty = (<B><I>’<I>+p<oc>W)71 (24

with
W — dlag( p/2- ‘),i:l,...,N (25)

The components v; of the vector v can be calculated using

<>+ Z*TPV,-

1—p/2 )
! p/

v; = argmin

Vi
which results in the following update

vi=<x?>,i=1,..,N. (26)

It is clear that W in (25) is a weighting matrix, similar to that
used in IRLS algorithm [12], which together with xi2 provides
an estimate of || x ||5. However, in [12] the elements of W
are chosen as (<x;>2)?/>~!, whereas in this work they are
equal to (<x?>)P/>~1, which is calculated from

<x7> = (Byp])* + By (i — By )’

= <>+ (Zx) (27)

i
where (Ex);; denotes the i" diagonal element of the matrix
Y, and it is the variance of the coefficient x;. The first term
is equivalent to the one used in IRLS algorithms, and the
second term incorporates the uncertainty of the estimate x in
the reweighting procedure. Using this information results in
significant improvement in the reconstruction performance
compared to the IRLS methods. Additionally, the estimated
variances can be utilized for designing adaptive measurement
systems as in [16].

Finally, from (22), the distributions q(o) and q(f3) are
found as Gamma distributions given by

g(a) e oV/prde—l exp [(X (va/erbg) (28)
0 E, . — ®x|)?
g(B) < B! p[ﬂ( g )(||y2 2 +bg)].
(29)
The means of these distributions are given by
N/p+d}
<a>=Eyqla] = 4”;*2 o (0)
l‘VlP +b%
and
N/2+a%
<B>=E,pB] = (31

By (Iy — ®xI3) /245
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The denominator in (31) is calculated using
E, ) [ly — ®x[[3] = |y — <x>|[5 + trace(£,®' ®). (32)

In summary, the algorithm iterates between (23), (25), (30)
and (31) until convergence. The estimate <x> in (23) can
be calculated by standard methods, such as Gaussian elim-
ination. However, explicit calculation of the matrix Xy is
needed in (27) and (32). This is computationally very in-
tense, since Xy is of size N x N. To increase efficiency and
decrease numerical errors, we first calculate the incomplete

Cholesky factorization £, ! ~ LL” and approximate X, by
1

(L)

To conclude this section, we investigate the special case

of noiseless CS measurements (y = ®x). From (23) and

(24), we see that when B — oo, the estimate of x is given by

<x>=W'd (@W'®) y. (33)

Let us further assume that the distribution q(x) is a degener-

ate distribution, that is, a distribution which takes the value

<x> with probability one and the rest with probability zero.
Then, <xl-2> = <x;>2, and therefore

W = diag (|<x;>|"?) . (34)

The estimate in (33) combined with (34) coincides with the
IRLS algorithm [11], thus [11] is a special case of the pro-
posed method. Moreover, by including an appropriate regu-
larization in (34), [12] can also be shown to be a special case
of the proposed method.

4. EXPERIMENTS

In this section we present numerical comparison of our
method with some of the state-of-the-art algorithms for CS
recovery. We generate sparse vectors x of size N = 256 with
20 nonzero coefficients, which are drawn from a zero-mean
Gaussian distribution of variance 1. The M x N measurement
matrices ® are also generated from a zero-mean Gaussian
distribution with variance 1, and their columns are scaled to
have unit 2-norms. Other choices of both the signal and mea-
surement matrix gave similar results.

In the proposed algorithm, the LS-solution (®/®) ' &'y
is used as the initial estimate of x , and the iterations are
stopped when the Euclidean divergence from the estimate
to the previous iteration is less than 1075, Finally, the re-
construction error is calculated as ||X — x||»/||x||2, where
% and x are the estimated and true coefficient vectors, re-
spectively. For all methods and experiments, the number
of samples M varies from 60 to 120 in steps of 10, and re-
sults were averaged over 100 executions of each method. We
study both noiseless and noisy observations, using zero-mean
white gaussian noise of standard deviation 0.03.

We first study the effect of the variable p on the recon-
struction performance of our algorithm, denoted by BCS-Ip
in the following. Figure 1 shows error rate comparisons be-
tween six selected p-values for both noiseless and noisy ob-
servations. It is clear that smaller values of p result in lower
reconstruction errors for both cases. Note also that the per-
formance increase is logarithmic when decreasing p, so val-
ues close to p = 0.01 results in similar performance.

Fig. 2 compares the proposed algorithm, using both
noiseless and noisy measurements, with respect to a se-
lection of existing CS reconstruction algorithms, namely,
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Figure 1: Reconstruction errors obtained by the proposed
method with varying the number of measurements M for p-
values 0.01, 0.1, 0.3, 0.05, 0.7 and 1. The measurements are
noiseless in (a) and Gaussian noise with standard deviation
0.03 is added to the measurements.

BCS [16] and BCS-Laplace [22] (both greedy algorithms);
BP [2] and GPSR [3] (global optimization methods mini-
mizing /{-norm), the IRLS method [12] (minimizing a non-
convex norm and using an optimal regularization strategy as
described in [12]) and iterative hard thresholding (IHT) [5]
(minimizing lp norm). For all algorithms, their MATLAB
implementations in the corresponding websites are used, and
the required algorithm parameters are set according to their
default setups. We chose p = 0 for IRLS as it provided the
best comparative results.

It can be observed from Fig. 2 that (a) in the case of
noiseless measurements, BCS-1p outperforms other methods
in terms of reconstruction error and it achieves perfect re-
construction with fewer number of measurements; and (b)
when noise is present, BCS-lp provides the smallest recon-
struction error for small number of measurements, but other
algorithms are better for higher values. We believe that this
is mostly due to numerical errors arising when solving the
linear system in (23). Note that a similar behavior can also
be observed with IRLS. The performance of GPSR is ex-
pected to increase with manually tuning its parameters. An
additional advantage of our method is that it does not require
parameter-tuning. An interesting observation from Fig. 2(a)
is that the reconstruction performance is improved as more
heavy-tailed distributions are utilized as sparsity priors.

5. CONCLUSIONS

We have developed a Bayesian framework utilizing non-
convex sparsity priors for compressed sensing reconstruc-
tion, through a majorization-minimization approach. By

113



=4
o

BCS
~-BCS-Laplace
~-BP
“-GPSR

IHT
-©-BCS-Ip p=0.01
—IRLS p=0

/

o
~

o
N
T
i

Reconstruction Error
o
W,

o
o
N
o
IS
~
o
8@

85 90

BCS
~-BCS-Laplace
>-BP

A “-GPSR
0.45\ IHT
4 -5-BCS-lp p=0.01

Reconstruction Error

Figure 2: Comparison between a number of CS reconstruc-
tion algorithms with varying number of measurements M
with (a) noiseless and (b) noisy measurements.

using variational Bayesian analysis, the reconstruction al-
gorithm developed from this framework simultaneously es-
timates all unknowns and provides distribution estimates,
which account for the estimation uncertainties and can be
used to ensure the accuracy of the estimation process. We
have shown that the proposed formulation is a generalized
version of some existing methods, such as reweighted least
squares and sparse Bayesian methods, and therefore it can
provide potential directions for improvement. Experimental
results demonstrate that using non-convex priors our method
achieves higher reconstruction accuracy, and also that the un-
known signal can be recovered with fewer measurements.
We have shown that our method is competitive compared to
state-of-the-art methods in terms of reconstruction error.
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