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ABSTRACT
During the last five years, several convex optimization al-
gorithms have been proposed for solving inverse problems.
Most of the time, they allow us to minimize a criterion com-
posed of two terms one of which permits to “stabilize” the
solution. Different choices are possible for the so-calledreg-
ularization term, which plays a prominent role for solving
ill-posed problems. While a total variation regularizationin-
troduces staircase effects, a wavelet regularization may bring
other kinds of visual artefacts. A compromise can be envis-
aged combining these regularization functions. In the con-
text of Poisson data, we propose in this paper an algorithm
to achieve the minimization of the associated (possibly con-
strained) convex optimization problem.

1. INTRODUCTION

Different algorithms in convex optimization have been pro-
posed to minimize regularized criteria used to provide solu-
tions to ill-posed problems. In this paper, we are more specif-
ically interested in restoring degraded images when the noise
is Poisson distributed.

A way to take into account Poisson noise consists of ap-
plying a pre-processing on the data (like the Anscombe [1]
or the Haar-Fisz [2] transforms) in order to stabilize the vari-
ance and then to apply standard restoration tools [3, 4].

One of the first restoration method aiming at maximiz-
ing the Poisson likelihood is the Richardson-Lucy algorithm
[5, 6]. However, the main drawback of this method is that it
does not allow us to incorporate information about the target
solution, except the positivity constraint in an implicit man-
ner. An improved form of this algorithm involving a total
variation [7] regularization was recently proposed in [8].Due
to the equivalence between the maximization of the Poisson
likelihood and the mimization of a Kullback-Leibler diver-
gence, other forms of multiplicative iterative algorithmshave
been proposed in order to take into account specific forms of
regularizations [9].

However, during the last decade, much interest has been
gained in introducing a priori information about the target
image in a transformed domain. Actually, wavelets are of-
ten used due to their ability to provide sparse representations
for many classes of regular signals. In this respect, redun-
dant frames (overcomplete transforms) constitute more flex-
ible tools than orthonormal bases for building linear repre-
sentations of images. A number of recent works [10] have
emphasized the interest in using specific tight frames for per-
forming geometrical analyses of images.

Existing works for solving inverse problems in a frame
are often restricted to noise with log-likelihood having a Lip-

schitz continuous gradient [10]. To alleviate this restric-
tion, the authors in [11, 12] considered algorithms mixing
forward-backward [10] and Douglas-Rachford algorithms.
First, Duṕe et al. [11] investigated an elegant adaptation of
the Anscombe approach and then, in [12] a quadratic exten-
sion technique was introduced.

One of the drawbacks of the approaches based on wavelet
representations is that they may introduce visual artefacts,
e.g. some lack of regularity in homogeneous areas or ring-
ing artefacts along edges. Alternative solutions based on the
use of the total variation can be employed but they often lead
to so-called staircase effects. To circumvent these problems
and take advantage of both approaches, authors have sug-
gested in [13, 14] to jointly take into account the`1-norm
of the wavelet coefficients and the total variation penaliza-
tion, which resulted in a significant improvement of the vi-
sual restoration quality. These works are however restricted
to data corrupted by Gaussian noise.

The purpose of this paper is to extend the work in [13] so
as to solve linear inverse problems in the presence of Poisson
noise. LetH be a real separable Hilbert space correspond-
ing to the frame coefficient space. We aim at finding

min
x∈C

g(x)+ f (x)+h(x) (1)

whereg, f andh are assumed to be in the classΓ0(H ) of
lower semicontinuous convex functions onH taking their
values in]−∞,+∞] which are proper (i.e. not identically
equal to+∞). h is related to a total variation penalization
andC is a nonempty closed convex subset ofH . From a
Bayesian interpretation whenC = H , f + h can be viewed
as an a priori term on the frame coefficients of the original
image,g corresponds to the Poisson anti log-likelihood (fi-
delity term) and the main difficulty is to minimize (1) when
the degradation is a combined effect of a linear operator (e.g.
a blur) and a Poisson noise. These three functions will be
detailled in Section 2.

The proposed method is based on recent developments
in convex optimization. Its main advantage is that it does not
require any approximation of the noise distribution unlike
the Anscombe approach [11] or the quadratic extension
in [12]. The main contribution of our work consists of
taking advantage of the structural properties of the linear
degradation operator so as to design an efficient algorithm.

In Section 2, we formulate the minimization problem
associated with the restoration of data corrupted by Poisson
noise. A hybrid regularization combining a wavelet sparsity
promoting term and a total variation term is considered.
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The optimization algorithm used to solve this problem is
also described based on the work in [13]. In Section 3, we
briefly recall the definition of the proximity operator which
is the building block of this algorithm. The main difficulty
to be addressed here is that the proximity operator of the
Kullback-Leibler divergence term does not have an explicit
expression. A way of solving this problem is then proposed.
Finally, in Section 4, we provide numerical examples as well
as algorithm implementation details.

2. PROBLEM FORMULATION

The degradation model is the following,

z= Pα(Tȳ) (2)

where ȳ ∈ R
N
+ is the original data of sizeN degraded by

a non-negative valued convolutive operatorT and contam-
inated by a Poisson noise with scaling parameterα ∈ R

∗
+.

The vectorz∈ N
N ⊂ G = R

N represents the observed data.

2.1 Frame representation

In inverse problems, certain physical properties of the target
solutiony are most suitably expressed in terms of the coef-
ficientsx = (ξ k)k∈K⊂N (whereK = {1, . . . ,K}) of its repre-
sentationy = ∑k∈K ξ kek with respect to a family of vectors
(ek)k∈K⊂N in a Hilbert spaceG . Recall that a family of vec-
tors (ek)k∈K in G constitutes a frame if there exist two con-
stantsν andν in ]0,+∞[ such that

(∀y∈ G ) ν‖y‖2 ≤ ∑
k∈K

|
〈

y,ek
〉

|2 ≤ ν‖y‖2. (3)

The associated frame operator is the injective bounded linear
operator

F : G → `2(K) : y 7→ (
〈

y,ek
〉

)k∈K, (4)

the adjoint of which is the surjective bounded linear operator

F∗ : `2(K) → G : (ξk)k∈K 7→ ∑
k∈K

ξkek. (5)

Whenν = ν = ν in (3), (ek)k∈K is said to be a tight frame.
In this case, we have

F∗ ◦F = ν Id, (6)

where Id is the identity operator. A simple example of a tight
frame is the union ofm orthonormal bases, in which case
ν = ν = m. Considering a frame representation, Model (2)
can be re-expressed as,

z= Pα(TF∗x̄) (7)

wherex̄ represents frame coefficients of the original data (y=
F∗x̄).

2.2 Convex optimization

In the context of inverse problems, recent studies proposedto
restore the original signal by solving a convex optimization
problem of the form:

Find min
x∈H

J

∑
j=1

f j(x) (8)

where( f j)1≤ j≤J are functions ofΓ0(H ) whereH = R
K .

In restoration methods,J is usually equal to 2. One func-
tion is a smooth term related to the observation model and
the second one is a regularization term. In the case of data
degraded by a Poisson noise, a standard choice for the first
function is a Kullback-Leibler divergence term [15]. More
precisely, we employ the Kullback-Leibler divergenceDKL
from TF∗x to z, for everyx∈ H :

DKL (TF∗x,z) = Ψ(TF∗x) (9)

where,

(

∀u = (u(n))1≤n≤N ∈ G
)

, Ψ(u) =
N

∑
n=1

ψn(u
(n)). (10)

and

ψn(υ) =















αυ −z(n) +z(n) ln
(z(n)

αυ

)

if z(n) > 0 andυ > 0,

αυ if z(n) = 0 andυ ≥ 0,
+∞ otherwise.

Concerning the regularization function, in [16, 17, 10]
the authors consider a penalization in the wavelet domain
corresponding to power functions of the coefficients with
exponentspk ∈ {1,4/3,3/2,2,3,4}. Another type of reg-
ularization that can be envisaged employs a total variation
measure. Recently, in [13], a hybrid regularization was pro-
posed which gives good results in the context of an addi-
tive white Gaussian noise. We thus propose to use a sim-
ilar compound regularization in the case when the data are
corrupted by Poisson noise. In this context, Problem (1)
is solved by settingg = Ψ ◦T ◦F∗ whereΨ is defined by
(10). The functionf corresponds to the regularization term
operating in the wavelet domain, which is chosen such that
∀x = (x(k))1≤k≤K ∈ H , f (x) = ∑K

k=1 φk(x(k)) where, for ev-
ery k ∈ {1, . . . ,K}, φk is a finite function ofΓ0(R) such that
lim|x(k)|→+∞ φk(x(k)) = +∞ andh represents a total variation
term such thath = tv ◦F∗, tv being the total variation oper-
ator defined in [13, Experiment 2]. Hence, the considered
minimization problem in (1) becomes,

min
x∈H

DKL (TF∗x,z)+ϑ f (x)+κ tv(F∗x)+ ιC(x) (11)

whereιC is the indicator function of a closed convex setC
(for example related to support or value range constraints)
such that,

(∀x∈ H ) ιC(x) =

{

0, if x∈C;
+∞, otherwise.

(12)

Throughout the paper, it is assumed that(TC∗)∩]0,+∞[N 6=
∅ with C∗ = F∗C = {F∗x | x∈C}.

The nonnegative real parametersϑ andκ control the de-
gree of smoothness in the wavelet and in the space domain,
respectively. Notice that, whenϑ = 0, the regularization re-
duces to the standard total variation penalization and thatthe
approach we propose in this paper thus provides also an ef-
ficient numerical solution to such a more classical penalized
optimization problem.

In the class of convex optimization methods, to the best
of our knowledge, only one algorithm allows us to efficiently
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minimize the sum of four terms, which are not differentiable.
The algorithm was proposed by Combettes and Pesquet in
[13] and is summarized next.

Algorithm 2.1 Let γ ∈ ]0,+∞[. For every j ∈ {1, . . . ,J},
set(ω j)1≤ j≤J ∈]0,1]J such that∑J

j=1 ω j = 1, (y j,0)1≤ j≤J ∈

H J andx0 = ∑J
j=1 ω jy j,0. Let (a j,l )l∈N be a sequence inH

which corresponds to possible errors in the computation of
proximity operators. Then, the sequence(xl )l≥1 is generated
by the following routine: for everyl ∈ N,











































For j = 1, . . . ,J
bp j,l = proxγ/ω j f j

y j,l +a j,l

pl = ∑J
j=1 ω j p j,l

λl ∈ ]0,2[

For j = 1, . . . ,J
by j,l+1 = y j,l +λl (2 pl −xl − p j,l )

xl+1 = xl +λl (pl −xl )

(13)

The prox operator introduced in the first loop will be de-
fined Section 3. The sequence(xl )l≥1 converges to a solution
to Problem (8) under the following assumption.

Assumption 2.1
(i) lim ‖x‖→+∞ f1(x)+ . . .+ fJ(x) = +∞.

(ii) ∩J
j=1rintdom f j 6= ∅ (whenH is finite-dimensional)1.

(iii) ∑l∈N λl (2−λl ) = +∞.
(iv) (∀ j ∈ {1, . . . ,J}) ∑l∈N λl‖a j,l‖ < +∞.

The main difficulty in applying this algorithm to our
restoration problem is that it requires to compute the prox-
imity operators associated to each of the four terms in (11).
Closed forms of these quantities are known for the indica-
tor function, the functionf [10] and the total variation term
(through the decomposition method proposed in [13]). The
main problem remains in the computation of the proximity
operator of the Kullback-Leibler divergence term. In the next
section, we will recall the notion of proximity operator, be-
fore providing an answer to this question.

3. CONVEX OPTIMIZATION TOOLS: PROXIMITY
OPERATOR

3.1 Definition and properties

A fundamental tool in the study of the convex optimization
methods is the proximity operator introduced by Moreau in
1962 [18]. The proximity operator ofϕ ∈ Γ0(H ) is defined
by

proxϕ : H → H ;x 7→ arg min
y∈H

1
2
‖y−x‖2 +ϕ(y). (14)

We thus see that proxιC reduces to the projectionPC onto the
convex setC. Other examples of proximity operators corre-
sponding to the potential functions of standard log-concave
univariate probability densities have been listed in [10].

We now recall the proximity operator of the potential as-
sociated with a Gamma distribution which is closely related
to the Kullback-Leibler divergence [19].

1The relative interior of a setS of H is designated by rintS and the
domain of a functionf : H →]−∞;+∞] is domf = {x∈ H | f (x) < +∞}.

Example 3.1 [10] Let ω ∈ ]0,+∞[, χ ∈ [0,+∞[, and set

ϕ : R → ]−∞,+∞] : η 7→

{

−χ ln(η)+ωη , if η > 0;
+∞, if η ≤ 0.

(15)
Then, for everyη ∈ R,

proxϕ η =
η −ω +

√

|η −ω|2 +4χ
2

. (16)

Our minimization problem being formulated in a frame
representation, we will also need a property concerning the
calculation of the proximity operator of the composition ofa
function ofΓ0(G ) and a linear operator:

Proposition 3.2 [19] Let H andG be real Hilbert spaces,
let ϕ ∈ Γ0(G ), and let L: H → G be a bounded linear op-
erator. Suppose that the composition of L and L∗ satisfies
L◦L∗ = ς Id, for someς ∈ ]0,+∞[. Thenϕ ◦L ∈ Γ0(H ) and

proxϕ◦L = Id+ ς−1L∗ ◦ (proxςϕ − Id)◦L. (17)

3.2 Case of a convolutive operatorT

In order to solve Problem (11), we will be interested in de-
termining the proximity operator ofg = Ψ ◦T ◦F∗. As will
be shown next, the proximity operator of this function can
be determined in a closed form for specific cases only. How-
ever,g can be decomposed as a sum of functions for which
the proximity operators can be calculated explicitly. We sub-
sequently assume that:

Assumption 3.3 (ek)1≤k≤K is a tight frame ofG = R
N with

frame constantν > 0.

Let us now focus on functiong. Let (Ii)1≤i≤I be a
partition of {1, . . . ,N} in nonempty sets. For everyi ∈
{1, . . . , I}, let Mi be the number of elements inIi and let
ϒi : R

Mi → ]0,+∞[ : (ηn)n∈Ii 7→∑n∈Ii
ψn(ηn). We have then

g = ∑I
i=1 ϒi ◦Ti ◦F∗ whereTi is the linear operator fromRN

to R
Mi associated with the matrix

[tm1 . . . tmMi
]>

with Ii = {m1, . . . ,mMi}. The following assumption will play
a prominent role in the rest of paper:

Assumption 3.4 For all i ∈ {1, . . . , I}, (tn)n∈Ii is a family of

orthogonal vectors having the same normσ1/2
i with σi > 0.

Note that this assumption is obviously satisfied whenI = N,
that is when∀i ∈ {1, . . . , I}, Ii reduces to a singleton.

Proposition 3.5 Under Assumptions 3.3 and 3.4, we have,
(∀i ∈ {1, . . . , I}) (∀x∈ H )

proxϒi◦Ti◦F∗(x) = x+
1

νσi
FT∗

i (π(n)
i −η(n)

i )n∈Ii (18)

where(η(n)
i )n∈Ii = TiF∗x and

(∀n∈ Ii) π(n)
i =

η(n)
i −ανσi +

√

|η(n)
i −ανσi |2 +4νσiz(n)

2
.

(19)
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Remark
(i) This result is a consequence of Proposition 3.2 by setting

L = TiF∗ and by using Example 3.1 to derive proxνσiϒi
.

(ii) It can be noticed that the application ofTi or T∗
i reduces

to standard operations in signal processing. The applica-
tion of Ti consists of two steps: a convolution with the
degradation filter and a decimation for selected locations
(n∈ Ii). The application ofT∗

i also consists of two steps:
an interpolation step (by setting zero everywhere except
for indicesn ∈ Ii) followed by a convolution with the
filter with conjugate frequency response.

To reduce the number of proximity operators to be com-
puted, we want to find the smallest integerI such that, for ev-
ery i ∈{1, . . . , I}, (tn)n∈Ii is an orthogonal basis. Consider the
particular case of a deconvolution problem for images of size
N1×N2 (N = N1N2) involving a periodic convolution where
Q1×Q2 is the kernel size. The operatorT is associated with
a matrix having a circulant-block circulant structure [20]and
consequently,







t>1
...

t>N






=



































Θ0 O . . . O ΘQ1−1 . . . Θ1

Θ1 Θ0
. . .

. ..
. . .

...
...

. . .
. . .

. . . ΘQ1−1

ΘQ1−1
. . .

. .. O

O
.. .

. ..
. . .

...
...

.. .
. . .

. . . O
O . . . O ΘQ1−1 . . . Θ1 Θ0



































(20)

where O is the null matrix of size N2 × N2 and
(∀q1 ∈ {0, . . . ,Q1 − 1}) Θq1 is the matrix of sizeN2 ×N2
defined by

Θq1 =



































θq1,0 0 . . . 0 θq1,Q2−1 . . . Θq1,1

θq1,1 θq1,0 0
...

...
...

. . .
. . .

. ..
.. . θq1,Q2−1

θq1,Q2−1
. . .

. .. 0

0
...

...
.. .

...
...

. . .
. . .

.. . 0
0 . . . 0 θq1,Q2−1 . . . θq1,1 θq1,0



































.

(21)
(θq1,q2)0≤q1<Q1,0≤q2<Q2 denotes here the point spread

function of the degradation filter.

Let us defineI1 = min{i1 ≥ Q1 | N1 = 0 modi1} and,
I2 = min{i2 ≥ Q2 | N2 = 0 modi2}. In order to satisfy
Assumption 3.4, we subsequently setI = I1I2.

For all (i1, i2) ∈ {1, . . . , I1} × {1, . . . , I2}, set i = i2 +
I2(i1−1) and define

Ii = {n2+N2(n1−1) | (n1,n2)∈ {1, . . . ,N1}×{1, . . . ,N2}

andn1 = i1 modI1,n2 = i2 modI2}. (22)

Then, Assumption 3.4 holds and, for alli ∈ {1, . . . , I},
σi = ∑Q1−1

q1=0 ∑Q2−1
q2=0 |θq1,q2|

2.
We have therefore defined sets(Ii)1≤i≤I for which we can
compute the associated proximity operators as expressed by

Proposition 3.5. Note that calculations for other forms of
convolution operations (e.g. including zero-padding) canbe
achieved in a similar way.

Regarding Algorithm 2.1, theJ proximity operators to
be computed are: theI proximity operators corresponding to
prox γ

ωi
ϒi◦Ti◦F∗ , the four proximity operators associated with

the total variation term [13], the proximity operator of the
regularization functionf and also, the projection onto the
convex setC. To sum up,J = I +6 proximity operator com-
putations are needed in order to solve Problem (11).

4. EXPERIMENTAL RESULTS

In our simulations, our objectives are twofold: we will first
be interested in studying the influence of the combination
of total variation and wavelet regularization terms and then,
we will compare the results obtained by using the proposed
algorithm with those corresponding to state-of-the-art meth-
ods. Two test images (N1 = N2 = 256) will be considered
(see Fig. 1). For both examples,T is a uniform blur with
kernel dimensionsQ1 = Q2 = 3. Therefore, the partition car-
dinality I introduced in Section 3.2 is such thatI1 = I2 = 4.
C is here defined as(F∗)−1C∗ with C∗ = [0,255]N. A tight
frame version of the dual-tree transform (DTT) proposed in
[21] (ν = 2) using Symlets of length 6 has been employed
over 3 resolution levels. Strictly convex non-differentiable
potential functions are chosen, such thatφk = ωk|.|

pk + χk|.|

where(ωk,χk) ∈ ]0,+∞[2 andpk ∈ {4/3,3/2,2}.

Figure 1:“Peppers” image (left) and “Sebal” image (right).

4.1 Influence of each regularization term

We present some numerical and visual results considering
different adjustments ofϑ andκ . This experiment allows us
to illustrate the influence of the wavelet regularization and
the total variation one. In the images displayed in Figure 2,
it can be observed the artefacts related to the wavelet regu-
larization, the staircase effects which are typical of the to-
tal variation penalization and also the advantage of using a
hybrid regularization. Table 1 provides quantitative results
allowing us to evaluate the impact of the adjustement of the
regularization factorsϑ andκ .

κ = 0.04 κ = 0.02 κ = 0.01 κ = 0.005
ϑ = 1 20.6 21.6 21.9 21.9

ϑ = 0.2 21.4 22.6 22.9 22.5
ϑ = 0.1 21.6 22.8 23.1 22.1

ϑ = 0.05 21.8 23.0 23.0 21.4
ϑ = 0.01 21.8 22.8 22.1 19.1

Table 1:SNR for “Peppers” image withα = 0.1. Iteration number
(IN) lies between 100 and 200.
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Degraded,α = 0.1 (ϑ = 0.01,κ = 0.04)

(ϑ = 0.1,κ = 0.01) (ϑ = 1,κ = 0.005)

Figure 2:Some results for “Peppers” image.

4.2 Comparison with existing methods

We now aim at comparing the proposed algorithm with
existing methods such as the regularized Expectation-
Maximization proposed by Byrne [9], the Anscombe ap-
proximation method proposed by Dupé et al. [11] and the
quadratic extension proposed in [12] (for optimal parameter
values). The results are given in Table 2 for “Sebal” image
and for different noise intensity factorα. Whatever the scal-
ing parameter chosen, the proposed approach always gives
better results in terms of Signal Noise Ratio (SNR). In addi-
tion, the improvement in visual quality obtained by adding
the total variation penalization to the wavelet regularization
is illustrated in Figure 3.

α 0.01 0.05 0.1 0.5
EM-Reg. [9] 4.12 6.87 8.12 11.1

Anscombe - DTT [11] 7.93 10.8 11.7 13.6
Quadratic ext. - DTT [12] 8.91 11.0 11.8 13.6
Proposed algorithm - DTT 10.1 12.0 13.3 15.6

Table 2:SNR for “Sebal” image.

Degraded Quadractic ext. Proposed approach
θ = 0.1 (ϑ , κ) = (0.1,0.01)
IN = 500 IN = 120

Figure 3:Some visual results for “Sebal” image withα = 0.1.

5. CONCLUSION

A new approach to restore data degraded by a convolution
and Poisson noise has been proposed. The main advan-

tages of the method are (i) to deal directly with Kullback-
Leibler divergence (without requiring any approximation);
(ii) to permit the use of sophisticated regularization terms,
e.g. one promoting sparsity in a wavelet frame and a total
variation penalization. Numerical and visual results demon-
strate the effectiveness of the proposed approach.
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