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ABSTRACT

A new approach based on root-MUSIC frequency estimation 
method and a Multiple Layer Perceptron neural network is 
introduced. In this method, a feature vector is formed using 
power frequency, entropy, standard deviation, as well as the 
complexity of the time domain Electroencephalography 
(EEG) signal. The power frequency values are estimated 
using root-MUSIC algorithm. The resulted feature vector is 
then classified into three categories namely healthy, inter-
ictal (epileptic during seizure-free interval), and ictal (full
epileptic condition during seizure interval) states using Mul-
tiple Layer Perceptron Neural Network (MLPNN). The ex-
perimental results show that EEG states classification
maybe achieved with approximately 94.53% accuracy and 
variance of 0.063% applying the method on an available 
public database. This is a high speed with high accuracy as 
well as low misclassification rate method.

1. INTRODUCTION

The seizure mechanism resulted from Epileptic patients is 
not completely known yet, however, it is generally agreed 
that the brain's electrical activity transfers from a pre-seizure 
state called Pre-ictal to a final seizure state called Ictal. Since 
the epilepsy is characterized by recurrent unprovoked sei-
zures, the state between two seizures is called inter-ictal [1].
However, Ictal electrical activity during a seizure differs sig-
nificantly from the activity observed from a normal person 
with respect to both spectral as well as pattern of neuronal 
firing. Detection of seizure with only superficial observation 
of EEG signal, even for a trained neurologist, is not simply 
possible. Existence of muscle artifact, conflict with other 
brain activity and other existing artifacts as well as very low 
amplitude and so much noise sensitive EEG signals makes 
the seizure detection even more difficult. There is a need for 
an algorithm to overcome these problems in order to diagno-
sis and treat this disease properly.
Researches on automatic detection and prediction of epileptic 
seizures were started as early as 1970s [2, 3]. The early 
methods were primitive and were commonly based on linear
analysis. In recent years, nonlinear analysis methods espe-
cially Chaos theory [4, 5, 6, 7, 8] and methods based on time-
frequency distributions such as Wigner-Ville, Margenau-Hill, 
Rihaczek, Choi-Williams [9], STFT and wavelet transform 
[10, 11] has been popular among many researchers. These 
researches are mainly focused on detecting two ictal and 
normal states.

In recent years, Dastidar et al. [5, 6, 7] have reported accu-
racy about 96.67% by using wavelet transform and nonlinear 
features. Apparently, these researchers are the only group that 
tried to classify the EEG signals into three states, adding in-
ter-ictal along with Ictal and normal states.
Spectral estimation methods including AR based and pseudo-
spectrum based methods is one of the effective methods used 
for seizure detection. A. Subasi et al. compared subspace-
based method with AR spectral estimation for classification 
of seizure and non-seizure EEG signal [12]. In their work, 
AR methods including Burg, Yule–Walker, and pseudo-
spectrum algorithms such as MUSIC were compared with 
each other in terms of their frequency resolution and the ef-
fects on only classification of epileptic seizure. 
They implied that the subspace-based methods are extremely 
valuable for use in epileptic seizure detection. They, how-
ever, did not classify inter-ictal states.
The same research group in another study have used MUSIC, 
autoregressive (AR) and periodogram methods (such as FFT) 
to obtain power spectrum of EEG signal of epileptic patients 
[13]. In their study, the power spectrum was used as an input 
to a classifier. They implied that the MUSIC and MLP-based 
classifier produces accurate classification. Like the previous 
one, they did not classify inter-ictal state in this study.
MUSIC algorithm was also used successfully for classifica-
tion of the arrhythmia from Electrocardiography (ECG) [14].
In this article, motivated by works done in [13] and [14], the 
harmonics of the EEG signal are estimated using root-
MUSIC algorithm (a variation of MUSIC algorithm). Adding 
the entropy of the estimated spectrum, standard deviation,
and the complexity measure of the original signal to these 
harmonics values allows us to create a feature vector neces-
sary for our classification purpose. This feature vector is 
classified into three states, namely healthy, inter-ictal and 
ictal states, using Multiple Layer Perceptron (MLP) neural 
network.

2. MATERIALS AND METHOD

2.1 Data

The data used in this research are a subset of the EEG data
for both healthy and epileptic subjects made available online 
by Dr. Ralph Andrzejak of the Epilepsy Center at the Univer-
sity of Bonn [15]. In fact, the EEG data is selected from 
three groups, each containing 100 single-channel EEG seg-
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ments and each has duration of 23.6 seconds. The selected 
groups are: 
 group Z (Healthy group): signal segments from healthy 

subjects 
 group N (inter-ictal group):signal segments from epilep-

tic subjects during a seizure-free interval
 group S (Ictal group):  signal segments from epileptic

subjects during a seizure interval
All EEG signals are recorded with the same 128-channel 
amplifier system, using an average common reference. The 
data were digitized at 173.61 samples per second using 12 bit 
resolution and they have the spectral bandwidth of the acqui-
sition system, which varies from 0.5 Hz-85 Hz.

2.2 Root-MUSIC algorithm

Subspace-based spectrum estimations such as MUSIC are 
used for estimating frequencies and powers of signals from 
noisy measurements [16]. These methods are based on an 
eigen-decomposition of the correlation matrix of the noisy 
signal. Signal is partitioned into signal subspace and signal-
plus-noise subspace such that noise subspace is orthogonal to 
the signal-plus-noise subspace. Even when the signal-to-
noise ratio (SNR) is low, the subspace-based methods give 
frequency spectra of high resolution. These methods are best 
suited for narrow-band signals that can be assumed to be 
composed of several special sinusoids buried in noise.
In MUSIC method, it is supposed that signal is produced 
from P source with different angles with an additive white 
noise. The MUSIC pseudo-spectrum is calculated via the 
following formula: 
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where )( fv H is the conjugate transpose of time-window 

frequency vector given as:
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that is simply a length-M DFT vector at frequency f. qm are 
noise eigen-vectors. Roots of the denominator of Eq.14 cor-
respond to the frequencies of the complex exponentials. 
These roots produce P peaks in the pseudo-spectrum. There-
fore, we might want to consider the Z-transform of this de-
nominator:
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which is the sum of the z-transforms of the pseudo-spectrum 
due to each noise eigenvector. This (2M−1)th-order polyno-
mial has M−1 pairs of roots with one inside and one outside 
the unit circle. Since we assume that the complex exponen-
tials are not damped, their corresponding roots must lie on 
the unit circle. Thus, if we have found the M − 1 roots of 
Eq.16 the P closest roots to the unit circle will correspond to 

the complex exponentials. The phases of these roots may be 
computed and are equivalent to the estimated frequencies.
This method of rooting the polynomial corresponding to the 
MUSIC pseudo-spectrum is known as root-MUSIC. Note that 
in many cases, a rooting method is more efficient than com-
puting a pseudo-spectrum at a very fine frequency resolution 
that may require a very large FFT [16].
In order to calculate the root-MUSIC from Eq.16, the number
of harmonics that compose the signal and is represented by 
the number of signal eigenvectors (i.e. P in Eq.16) should be 
known or selected based on proper experiments. We select 
various values for this parameter as reported in section 3.
Note that EEG signal has low amplitude that make it very 
sensitive to noise; Therefore, using super-resolution eigen-
based pseudo-spectral estimation method such as root-
MUSIC can significantly improve accuracy of detection and 
reduce incorrect classifications percentage.

2.3 Methodology

The proposed method is composed of three steps: pre-
processing, feature extraction and signal classification. As the 
first step, the pre-processing includes a low pass filter which
is used to limit the frequency band of EEG signals such that 
it can eliminate the involved noise in the received signal to 
some extent. In the second step, the feature vector is formed 
using the discussed features extracted from the time-domain 
EEG signal and its root-MUSIC pseudo-spectral estimation. 
The final step includes the classification of the feature vector
using an MLP neural network. A brief description of the 
method is as follow.
From physiological standpoint, frequencies greater than 60 
Hz can be classified as noise and could be discarded [5]. 
Therefore, we used a finite impulse response (FIR) low pass 
filter to discard the frequencies over 60Hz. Note that, the 
energy of the frequency band eliminated by the filter is neg-
ligible compared with that of the retained band in the 0–60 
Hz range.
In the second step, which is the feature extraction to form the 
feature vector, root-MUSIC pseudo-spectrum of band limited 
EEG signal resulted from pre-processing is computed. Then, 
the standard deviation (Std) and complexity of the time-
domain EEG signal, after passing it through a low-pass FIR 
filter with a cut-off frequency of 60Hz, is computed.  
Complexity is one of Hjorth parameters [17] and is calculated 
using another Hjorth parameter named Mobility. It is given 
by:
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In this equation, s is the standard deviation of the signal, s, 

and 's is the standard deviation of the derivative of s. De-

rivative of the signal, s', is calculated using:
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Now the complexity is calculated using Eq.18 via following 
equation:
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Another variable used as a feature, is the Log-Entropy, which 
is calculated using the following relation:


i
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(21)

where is is ith input data sample.

The required feature vector is then formed from combination 
of Std, Complexity and entropy parameters as well as the 
frequencies that is estimated via root-MUSIC algorithm men-
tioned above, according to the following relation:
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which freq1, freq2, ... are estimated frequencies resulted from 
root-MUSIC algorithm.
The feature vector is then normalized such that each of its 
values is fall into the range of [-0.5, 0.5]. The normalized 
values help the feature vector be more adapted to the Neural 
Network classifier. Finally, the resulted normalized feature 
vector is applied as the input to the neural network classifier.

2.4 MLP Neural Network

One of the most common Neural Networks is Multiple Layer 
Perceptron Neural Network (MLPNN). The architecture of 
MLPNN may contain two or more layers. Input layer is the 
first layer which its number of neurons is equal to the number 
of selected specific features. Output layer is the last layer 
which determines the desired output classes. The number of 
neuron in the output layer depends on the number of desired 
classes and design. The intermediate layers may be added to 
increase the ability of MLPNN mostly useful for nonlinear 
systems. Although each MLPNN could include multiple hid-
den layers, it is typical to use just one hidden layer with a try-
and-error based number of neurons. 
Unlike the input and output layers, we have no prior knowl-
edge of the number of neurons needed in the hidden layer. 
Large number of neurons in the hidden layer would definitely 
increase the computational complexity and the processing 
time, however, small amount would increase the classifica-
tion errors. Therefore, determining the appropriate number of 
neurons in the hidden layer is one of the most critical tasks in 
a neural network design. 
The most popular approach to find the optimal number of 
hidden layers is by try-and-error [18]. In this research, we 
choose this approach, as well. The best result is achieved 
when 50 neurons are used in the hidden layer.
Another important and integral part of ANN model is to se-
lect a suitable training algorithm. An optimal training algo-
rithm is the one that shorten the training time most while 
achieves the best possible accuracy. As there are number of 
training algorithms for MLPNN, we used the Feed-Forward 
back propagation training algorithm in our study [18]. 

3. EXPERIMENTAL RESULTS 

The problem of improving the classification accuracy is tack-
led from two different angles: 1) designing an appropriate 
feature space by identifying the parameters that increase the 
interclass separation of root-MUSIC algorithm used in this 
research; and 2) designing a classifier that can accurately 

model the classification problem based on the selected fea-
ture space.
The EEG classification problem is approached using a super-
vised learning technique, namely Feed-Forward back-
propagation training algorithm. Usually, for supervised learn-
ing, the available input data set is divided into training input
set and testing input set. 
For obtaining a sound result, we used k-fold cross validation
(with k=3) for testing and training data [19]. In this study, the 
training input consists of 100 training instances out of 300 
available EEG signals. The remaining instances are used for 
testing input. Each instance is represented by the aforemen-
tioned FeatureVector calculated using Eq.22. In addition, 
each 3-folding is done 20 times and their averages and vari-
ances are obtained. 

Root-MUSIC order selection

As we mentioned earlier, root-MUSIC is a parametric fre-
quency estimation algorithm. The number of harmonics (i.e. 
complex exponentials) composing signal is required (i.e. P in 
Eq.16) in the root-MUSIC spectral estimation. 
From our past experiments and other literatures [12, 13], we 
predict that the number of harmonics may lie down in the 
range of 2 to 20. We select all the numbers in the range sepa-
rately. Fig.5 and Fig.6 illustrates overall accuracy and vari-
ance percentage of classification in terms of various numbers 
of selected harmonics.

0

20

40

60

80

100

120

2 4 6 8 10 12 14 16 18 20

Number of Harmonics

A
cc

ur
ac

y 
%

Ictal

Inter-ictal

Healthy

Overall

Fig.5) Accuracy vs. the selected number of root-MUSIC harmonics.
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Fig.6) The effect of number of root-MUSIC harmonics vs. variance

Fig.5 and Fig.6 illustrates that the best accuracy is achieved 
when the number of harmonics is selected to be 4 consider-
ing both the accuracy and variance of simulation results.

MLPNN Parameter

The effect of 5 to 80 number of hidden layer neurons in 
MLPNN for sound classification is studied. Fig. 7 and 8 
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show the average accuracy and the variance, respectively, of
classifying the three epileptic states, and the overall perform-
ance, employing the selected signals in the database, using 
our method. 
Since the weight initialization is random, each experiment 
setup has been repeated 20 times using 3-folding and the 
average of the results are taken. The variances depicted in 
Fig.8 are, in fact, the overall variation for the accuracies of
different number of hidden layer neurons.
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Fig.7) Accuracy vs. the number of hidden neurons in MLPNN

The results obtained in Fig.7 illustrate that there are low 
variations in ictal, inter-ictal and overall accuracy for the 
number of neurons in the hidden layer over five. This im-
plies that there is a low sensitivity to the number of hidden 
layer neurons, and that it is not necessary to select a large 
number of neurons which complicate the complexity.  
It also shows that the accuracy for ictal state detection is the 
highest while the accuracy for determining the healthy state 
is the least one among all cases.
The effect of number of hidden neurons in MLPNN using root-
MUSIC in terms of the variance of accuracy is shown in Fig.8. 
It shows that the classification of the healthy and iter-ictal 
states have large variances while a least amount of variation 
appears for the case of ictal state classification. Considering 
the results in both Fig.7 and Fig.8, we selected 35 neurons 
in the hidden layer of MLPNN. This number of neurons 
generates a very good accuracy as well as a very low va-
riance to classify all the three states. 
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Fig.10) The computed variance for repeating the experiments 
20 times at different number of hidden neurons in MLPNN.

Furthermore, the performance of our method for seizure de-
tection is evaluated in terms of sensitivity, specificity and 
overall accuracy. Sensitivity and specificity are used to 
evaluate the ability of the classifier to discriminate one class 
against another. The sensitivity is calculated as the proportion 
of positive samples correctly assigned to the positive class. 

The specificity is the proportion of negative samples cor-
rectly assigned to the negative class. The overall accuracy is 
the fraction of the total number of signals correctly classified.
Table 1 shows the results using 35 neurons in the hidden 
layer and selecting 4 harmonics for root-MUSIC algorithm.

Table 1: performance of Root-MUSIC (4 harmonics)
(Using 35 neuron in hidden layer of MLPNN)

Groups Root-MUSIC
(with 4 harmonics )

Sensitivity (%)
Healthy 90.19900
Inter-ictal 94.27861
Ictal (seizure) 98.68159

Specificity (%)
Healthy 95.09950
Inter-ictal 97.13930
Ictal (seizure) 99.34080

Overall accuracy (%)
94.527363 
(var=0.058)

As illustrates in Table 1, our method recognizes the seizure
state about 98.68% (sensitivity) and specificity of 99.34%. 
That is, the method misclassifies Healthy or inter-ictal class 
as seizure only 0.66% of the times. This is a significant 
achievement compare to the reported results by other re-
searches mentioned earlier in the introduction.

4. DISCUSSION

Although there are many studies dealing with seizure detec-
tion in the literature, a strict comparison between our method 
and the results reported by other researches are somewhat 
difficult. The reason behind this is that these researches are 
considered different number of epileptic states and well ass 
using non-standard and different databases, some of them not 
even available in the public domain.
In some papers only two states are considered: seizure and 
non-seizure. In some others, including our approach, dis-
crimination between healthy and inter-ictal states for non-
seizure situation are also considered. In this case, since Ictal
and inter-ictal states are very similar, classification procedure 
is much more complicated. 
In addition, the EEG signal samples used in most reports are 
created individually and therefore there are not available for 
further comparison, making the comparison between our 
method and theirs practically impossible. 
As we mentioned earlier, we selected data from a public da-
tabase available online [15]. This allows us to compare our 
method with the methods reported in [6, 7] where they con-
sidered the same problem of classifying three epileptic states 
as well as using the same public database. Table 2 is created 
with the aforementioned considerations. 
Note that, although the research done in [13], where MUSIC 
algorithm was employed, could not be considered for full 
comparison since the classification for only two states was 
studied and reported, we provided a vague comparison be-
tween our method and [13] as reported in the table. A very 
important note is that in their implementation, they used an 
entire window of MUSIC spectrum values usually in order of 
128 or 256 values (they did not report their window size), as 
features on MLPNN, while we employed four values resulted 
from four harmonics of root-MUSIC added to two other fea-
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tures (total of 6 feature values).  That is, the learning process 
for their MLPNN involved a tremendous amount of compu-
tations compare to our implementation. That makes our algo-
rithm in a sharp advantage in terms of processing time.

Table 2: Comparing the results obtained from the new method 
with that of [13], [6], and [7]

Methods
Accuracy 

(%)
Variance 

(%)
Proposed (root-MUSIC-MLP) 94.53 0.06
MUSIC-MLP [13] used for 2 states 77.39 15.3
PCA-WAVELET-CHOAS [6] 96.66 1.4
MIX-BAND-WAVELET-CHAOS [7] 96.67 -

Based on the results reported in this table, the proposed root-
MUSIC based method is proved to be a powerful approach 
with suitable results, although it seems to have a somehow 
less accuracy.  However, the advantage of our method is its
lower computational complexity.  Another clear advantage of 
our method is that it produces a very low variance. This im-
plies that the proposed algorithm is much more robust. 

5. CONCLUSION

In this paper, we propose an efficient new method based on 
root-MUSIC frequency estimation algorithm and MLPNN
for the classification of EEG signals into three states namely 
healthy, inter-ictal and ictal or seizure. In our method, root-
MUSIC spectral estimation is employed to estimate the fre-
quencies of the obtained signal and MLPNN is employed for 
classification of the root-MUSIC estimated frequencies pick-
ing different number of harmonics as well as the standard 
deviation and the complexity of the time-domain EEG signal. 
The simulation results show that only four harmonics are 
good enough to give acceptable accurate results. 
In order to assess the clinical applicability of the proposed 
method for epilepsy diagnosis and seizure detection, the clas-
sification sensitivity and specificity and the overall accura-
cies for each state (healthy, inter-ictal, or ictal) are tabulated 
in Table 1 (standard deviations of overall accuracy are noted 
in parentheses). It shows that the classification accuracy of 
about 94.53% and standard deviation of 0.06% is obtained. 
As the proposed system is based on features that have a low 
computational burden, it is suited for the real-time detection 
of epileptic seizures from ambulatory recordings. The com-
prehensiveness (since three states are considered), real-time, 
high accuracy as well as a low misclassifying rate of our
method make the detection of this chronic disease feasible.
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