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ABSTRACT
Per-pixel background estimation is very important for accu-
rate tracking of biological structures in video microscopy.
Mixture modeling of the background is hard due to less pri-
ors and heavy halo effects around the target biological struc-
tures in each frame. Since halos could have similar bright-
ness and motion pattern to the foreground sometimes they
are not identified as in the background by these methods. In
this paper we proposed a new method based on incremen-
tal frame grouping and iterate image fusion to compute the
per-pixel background in video microscopy. Experiments on
simulated microscopy videos and real sequence data set show
that our method could calculate the background with a quite
high precision. At the same time it also outperforms previous
methods in removing strong noise and heavy image blurring,
the ”halo”, which are especially useful attributes for video
microscopies.

1. INTRODUCTION

Per-pixel background estimation is a very important prob-
lem for accurate tracking of biological structures in video mi-
croscopy. Since we have less priors for the micro-structures
than for the daily objects, such as pedestrians, air planes, cars
etc, it is usually quite difficult to model either the foreground
or the background properly. For video microscopy the back-
ground is usually a soup of different kinds of noise. Some-
times there are also artifacts caused by the defects on the
surface of the capture device or the cover slip. Most of the
background estimation in microscopy video done previously
works on a mono-frame basis which doesn’t take advantage
of the temporal coherency information. The background in
a single frame is either cleared out by filters or modeled
using a mixture of Gaussian. Recent work [2][3][5]on the
second way shows fine results on the background subtrac-
tion of life scenes, such as traffic and pedestrians. How-
ever it could not work equally well on video microscopies
since these methods tend to fail in identifying the halos which
are quite common in video microscopy as background. All
these halos are bind to the boundaries of objects and they are
quite bright, sometimes even brighter than parts of the cellu-
lar structures, and they are not static. Most of the time they
will move with the surrounded object and thus become very
likely to be thresholded as the foreground in mixture model-
ing. However, in order to accurately quantify some cellular
structures that the biologists are currently interested in, such
as F-actin removing them is a must. Newly published STLBP
method[1] also shows promising results on dynamic back-
ground modeling which could deals with moving branches
or waving flags in the scene. However it doesn’t suit for
video microscopy processing either since the frames often
contain sub-pixel structures, such as microtubule filaments.

This makes the STLBP which works on per pixel basis not
so powerful. In this paper we proposed a method that could
do the per-pixel background estimation based on the image
fusion from a set of similar frames. Incoming frames are first
grouped by some criterion and then the background within
the group of frames is estimated by wavelet image fusion.
Section 2 gives a detailed description of our algorithm. Some
experimental results on simulated data and real microscopy
video sequences using our method are presented in section
3. The comparison between the original frames and back-
ground free results shows that our approach could obtain the
background estimation which contains both halos and noise
with a quite high precision. We draw a conclusion in the last
section.

Figure 1: The figure on the left is a randomly chosen frame
from the clean video (ground truth) and the one on the right
is the same frame from the noise contaminated and blurred
video for simulation.

2. PROPOSED METHOD

2.1 Frame Grouping
We did the background estimation on a frame group ba-
sis.The size of the frame group is not fixed however there
is a fixed upper bound for computational efficiency. We kept
a temporary data structure with a fixed length called frame
grouping buffer.The incoming frames were first stored into
the frame grouping buffer. When it was full, frames in the
buffer were clustered into frame groups based on an opti-
mization function to be introduced later. If the group assign-
ment resulted in a singleton and it was an early frame this
frame is either assigned to the previous group or the current
larger group depending on its similarity to its neighboring
frame in the corresponding group. Otherwise the group con-
taining early frames were removed from the buffer and the
remaining frames were pushed back to the bottom of the
buffer to make space for new incoming frames. We em-
ployed Kingsburys Dual-Tree Complex Wavelet Transform
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Figure 2: This figure shows the accuracy of background es-
timation on a frame basis of the whole simulation video se-
quence

(DT-CWT)[10] to compute a redundant image representa-
tion with six oriented complex detail subbands at each de-
composition level for each frame. The advantages of this
complex wavelet transform variant are its approximate shift-
invariance, its directional selectivity and the very efficient
implementation scheme by four parallel 2-D DWTs. All
of these properties come at the very low cost of four-times
redundancy in 2-D. The dissimilarity between consecutive
frames was computed as the root mean square of the differ-
ence between wavelet coefficient magnitudes over all the lev-
els shown in Eq.1

DSi, j =
L

∑
c=1

(
6

∑
k=1

(RMS(Ii
c,k, I

j
c,k))) (1)

where L denotes the composition level and k denotes the in-
dex of bandpass.Iic,k denotes the component image of kth

bandpass at composition level c of frame i. In order not to
make the frame group too small we only cut the frames in
the frame grouping buffer into 2 pieces. We used DSi, j to
denote the dissimilarity between frame i and frame j then the
decision of frame intersection point could be turned into the
following optimization problem shown in Eq.2

ps = argmaxi(ωDSi−1,i +max j<i((1−ω)DS j,i)) (2)

where ω was a weight to balance the consecutive frame dis-
similarity and the maximum of all the previous dissimilar-
ity.If ps was computed as i, the intersection was between i-1
and i. The first part in ps is trying to find the abrupt changes
and the second part is a representation of accumulated dif-
ference from gradual changes. We are seeking to strike a
balance between these factors by solving the optimization
function above. We also kept a threshold for the optimized
intersection dissimilarity function Eq.3

fi = ωDSi−1,i +max j<i((1−ω)DS j,i) (3)

if fopt was below this threshold all the frames in the frame
grouping buffer was assigned to the same group otherwise
they were divided up as the intersection point location. Since
we need to compute the pairwise dissimilarity the selection

Figure 3: This figure shows an example of our experiment
results on mono-color real microscopy videos. The video
shown here is downloaded from [7]. 9 consecutive randomly
chosen frames were put in one montage. The image on the
top is the original frame collection and the one that follows
is the post processed frame collection.

of frame grouping buffer size is crucial to both the computa-
tional efficiency and the accuracy of our algorithm. In all of
our experiments that follows this depth was set to five based
on trails and errors.

2.2 Group Based Background Estimation
All the frames in a group used the same background estima-
tion. The background was constructed by initially setting it
to pure black then literately doing image fusion on the cur-
rent background and one frame in the group.The background
is updated with the image fusion result each time. The it-
eration stopped until it had gone though all the frames in
the group and the final image fusion result was the estimated
background. We did the image fusion based on wavelet de-
composition. The procedure mainly followed what is intro-
duced in [6].
• The two images are respectively decomposed into sub-

images using forward wavelet transform, which have the
same resolutions at the same level and different resolu-
tion among different levels and

• Information fusion is performed based on both the high-
frequency and low-frequency sub-images of decomposed
images; and finally the result image is obtained using in-
verse wavelet transform.
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Figure 4: This figure shows an example of our experiment
results on color real microscopy videos. The video shown
here was downloaded from [8]. 9 consecutive randomly cho-
sen frames were put in one montage. The image on the top is
the original frame collection and the one that follows is the
post processed frame collection.

The activity level measurement is pixel based. However we
made some modification to the combining methods. Besides
of choosing the max of the coefficients from the images to
be fused, we added choosing the min into the combination
strategy. Choosing the mean of coefficients from images to
be fused was just a specified version of weighted average.
Let I1(x,y) and I2(x,y) be the images to be fused, the de-
composed low-frequency sub-images of I1(x,y) and I2(x,y)
which contains the main content of the image at resolution
s be represented as Il

1,s(x,y) and Il
2,s(x,y) respectively. Simi-

larly the decomposed high frequency sub-images which con-
tains the details of the image at resolution s be represented as
Ih
1,s(x,y) and Ih

2,s(x,y). Noticing that in 2D images the high
frequency components might refer to more than 1 band, we
just use the same annotation here out of simplicity consider-
ation. The low frequency component of the fused image at
pixel location p, namely Jl

s(p) could be computed as shown

in E.q.4

Jl
s(p) = [

∑q∈Np Il
1,s(q)

|Np|
+

∑q∈Np Il
2,s(q)

|Np|
]/2 (4)

Where Np denotes the neighborhood of pixel location p. The
high frequency component of the fused image at pixel loca-
tion p, namely Jh

s (p) could be computed as shown in E.q.5

Jh
s (p) = min(

∑q∈Np Ih
1,s(q)

|Np|
,

∑q∈Np Ih
2,s(q)

|Np|
) (5)

As seen in the Eq.4 and Eq.5 the low frequency component
was approximated by the mean of the two images in a local
neighborhood while the the high frequency components were
approximated by the minimum of the two images in a local
neighborhood. This was because low frequency part usually
contained the key structures of the image so a mean was used
to over come the gaussian blurring effects, which appear as
halos. The high frequency part was more likely to contain
noise and thus a minimum operator was used. To make the
computation efficient and preserve the information of details
we used haar wavelet and the decomposition level was set
up to 10. Though Daubechies and Symlets also appear to
be reasonable choices, experiments show that the simplest
wavelet basis, Haar wavelet works the best in all the cases.
This corresponds to the conclusion in [11] for edge detec-
tion. Even though the background was generated on a small
group frames, say less than or equal to 5, it was still a small
number compared to the number of frames in most of our ex-
periments and thus the calculation was quite fast. The back-
ground needed to be estimated for each image channel sepa-
rately. Therefore in the RGB cases, 3 backgrounds should be
computed and subtracted from the corresponding color chan-
nel respectively.

3. EXPERIMENT RESULTS AND ANALYSIS

3.1 Simulation
We generated a 200 frame simulated video of cell motion.
The main strategy for generating the cellular structures fol-
lowed the work [9] done by Lehmussola, A. et al. The clean
frames were first contaminated with Poisson noise, then con-
voluted by a 5 by 5 gaussian kernel with the standard devi-
ation of 0.5 to approximate the cellular blurring effect. We
added the gaussian noise with 0 mean and 0.01 variance, as-
suming the pixel intensities were scaled to range between 0
and 1, to simulate the noise from capture devices. One frame
of the resultant video was shown in Fig.1. We applied our
method to estimate the per-pixel background in each frame.
The accuracy of the background estimation is computed as
in Eq.6

Ã = 1− [
∑i
|I f

i −Î f
i |

I f
i

N
+

∑i
|Ib

i −Îb
i |

Ib
i

N
]/2 (6)

where N denotes the number of pixels in the image, I f
i de-

notes the foreground intensity of pixel i and Î f
i denotes the

estimated value. Similarly Ib
i denotes the background in-

tensity of pixel i and Îb
i denotes the estimated value. The

first part in E.q.6 represents the accuracy for the estimation
of the foreground and the second term shows the accuracy
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for the estimation of the background. The accuracy measure
based on Eq.6 of the processed video based on this setting
was shown in Fig.2. Most of the accuracies were around 95
percent which was a quite good result for per-pixel based
background estimation.

3.2 Real Video

We also applied our per-pixel background estimation algo-
rithm to videos from the real microscopy data, both RGB
and mono-color. The gray scale one had 59 frames with
a resolution at 280 by 236 and was downloaded from the
company website [7]of the work [6]done by Yu-li Wang. It
showed the ATP deplection that causes an immediately re-
traction of all the lamellipodia in which the actin filament
bundles (stress fibers) collapse into tight aggregates over 1-
2 hours. The RGB color video was one of the supplement
media resources for the paper[8] done by J. Azoury et al.
It contained 39 frames and the resolution was 550 by 534.
It showed the confocal sections of the F-Actin Cage around
the Microtubule Spindle. Z stack of a spindle from a control
oocyte expressing Utr-GFP (green) and Map7-RFP (red) ob-
served by live confocal microscopy at BD + 8 hr. The spindle
axis is perpendicular to the plane of observation. Z step, 1 m.
We picked two videos containing different kinds of biologi-
cal structures. This was to test whether our method had struc-
ture dependencies. The validation was performed manually
by the visual inspection of domain experts. Fig.3 and Fig.4
showed a montage for processed and unprocessed consecu-
tive frame images from these two videos. The starting points
were randomly chosen. The two images on the left were the
9 frames result of the mono-color video before and after sub-
tracting the estimated background using our method. And
the two on the right in the same figure showed the 9 frames
of the RGB video before and after subtracting the estimated
background. In the unprocessed images of the mono-color
frame sequence, the halos could be seen on the boundaries
of the cells and the fibers traversing the inside the cells were
seriously blurred. All these artifacts were removed in the
background free image montage on the left. Also the heavy
background noise in the green channel of the RGB frame se-
quence was successfully cleaned which resulted in a much
clearer view of the red nuclei. Strong noise, halos, which
were hard to be removed as background by Mixture Model-
ing, now could be easily dealt with.

4. CONCLUSION

We presented a per-pixel background estimation method by
first clustering the incoming frames into frame groups us-
ing the root mean squared difference between the magnitude
of DT-CWT coefficients of two consecutive frames then it-
eratively doing image fusion between the constructed back-
ground and each frame in the group. The background was
updated by the image fusion result after each iteration. Sim-
ulation on computer generated video sequence and real ex-
periments on microscopy videos showed the algorithm could
estimate the background in a quite high precision and demon-
strated the special advantages of our method in removing ha-
los and strong noise in the background which were often dif-
ficult for the mixture modeling related approaches.
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