
ARCHITECTURAL EXPLORATION IN BIOMEDICAL HARDWARE DESIGN USING
A NOVEL BEHAVIORAL SYNTHESIS METHODOLOGY

George Economakos

Microprocessors and Digital Systems Laboratory
School of Electrical and Computer Engineering

National Technical University of Athens
Heroon Polytechniou 9, GR 15780 Zografou, Greece
phone: + (30) 210 7723341, fax: + (30) 210 7722428

email: geconom@microlab.ntua.gr
web: www.microlab.ntua.gr

ABSTRACT
Medical diagnostics are changing rapidly, aided by a new
generation of portable equipment and handheld devices that
can be carried to the patient’s bedside. Processing solutions
for such equipment must offer high performance, low power
consumption and also, minimize board space and compo-
nent counts. Such a multi-objective optimization can be per-
formed with behavioral hardware synthesis, offering design
quality with significantly reduced design time. In this pa-
per, an architectural exploration of the hardware implemen-
tation of a known QRS detection algorithm is performed, fol-
lowing a rapid prototyping approach offered by an advanced
behavioral synthesis framework. Experimental results show
that with this approach performance improvements are intro-
duced with a fraction of design time, reducing dramatically
time-to-market for modern diagnostic devices.

1. INTRODUCTION

Advances of Information and Communication Technologies
(ICT) in the health sector are changing rapidly the way med-
ical diagnostics are delivered today. New, small size, low
power and improved efficiency integrated circuits can be
manufactured. The communication infrastructure can con-
nect previously isolated or abandoned areas with a wealth of
information flow. As a consequence, a new generation of
portable, hand-held, wearable or implantable equipment has
emerged that can follow the patient in different geographic
locations and through different activities.

Components designed to fit in this increasingly perva-
sive sensing network, offering higher processing power and
the ability to transfer larger amounts of information more
quickly, should offer advanced characteristics. In terms of
area, they should be small enough to be carried away. In
terms of processing power, they should be efficient to deliver
computation speed and advanced to cover demanding appli-
cations. In terms of power consumption, they should save
energy to increase battery life and thus availability time as
well. So, their design should follow a multi-objective opti-
mization path, from concept to implementation.

Such a multi-objective and much promising design tech-
nique is Behavioral or High-Level Synthesis (HLS) [5, 6].
HLS raises the level of design abstraction by translating
system level algorithmic descriptions into Register Transfer
Level (RTL) architectural descriptions. Although HLS has
been a research topic for more than twenty years, it has re-
cently gained industrial acceptance with the introduction of

hardware description languages like VHDL and Verilog in
design flows, and the availability of efficient synthesis meth-
ods and tools, that enable the translation of RTL designs into
optimized gate level implementations. Designing at higher
levels of abstraction allows a better coping with the system
design complexity, to verify earlier in the design process and
to increase code reuse.

The design of medical diagnostic environments has em-
ployed computer analysis of vital biosignals in many cases
during the last years. However, new companies are con-
stantly emerging and applying new technologies, such as
PDAs, in an effort to make smaller and cheaper systems.
Each new company must implement their own analysis al-
gorithms, duplicating much of the the efforts of every other
company. Similarly, researchers who need to explore new
diagnostic methods, must also implement their own versions
of basic analysis functions. Thirty years of research on com-
puter analysis of vital signals has produced a great many
methods for detecting and classifying characteristic patterns,
but there is still a significant effort required to go from theory
to implementation.

In an effort to reduce this industry and research wide
duplication of effort, open source analysis software [7, 2]
has been proposed. C functions have been developed and
made widely available, that implement the most basic ECG
analysis operations, detection and classification of individual
beats. Using this open source software new companies are
able to bring reliable systems to market more quickly, and
researchers are able to spend more time exploring new diag-
nostic techniques rather than implementing beat detectors.

In this paper, this open source software is passed through
a commercial tool that offers HLS advantages, the Bluespec
synthesis tool [1]. This proposed methodology combines
advantages of open source software and abstract hardware
specification and synthesis for rapid prototyping of modern,
powerful embedded medical diagnostic devices. Specifically,
the development time is greatly reduced (compared to other
hardware design techniques), implementation quality is com-
parable to manual designs, code reuse is maximized, simu-
lation time is reduced and there is no need to hire a special-
ized hardware design team (at least for prototype implemen-
tation). The resulting hardware components can be used as
stand alone or co-processing elements in a System-on-Chip
(SoC) architecture, using appropriate interface components.
Moreover, this approach is not limited to ECG analysis but
can be applied to any application for which an algorithmic

17th European Signal Processing Conference (EUSIPCO 2009) Glasgow, Scotland, August 24-28, 2009

© EURASIP, 2009 983

C/C++ description is available, open source or proprietary.
The rest of the paper is organized as follows. Section 2

is a presentation of related research activities and section 3
presents Bluespec synthesis. Section 4 gives results from the
conducted experiments and finally, section 5 is the conclu-
sion and the expected future extensions.

2. RELATED RESEARCH

Electrocardiography (ECG or EKG) is the recording of the
electrical activity of the heart over time, via skin electrodes.
An ECG displays the voltage between pairs of these elec-
trodes, and the muscle activity that they measure, from dif-
ferent directions. This display indicates the overall rhythm
of the heart and weaknesses in different parts of the heart
muscle. A typical ECG tracing of a normal heartbeat (or
cardiac cycle) consists of a P wave, a QRS complex and a
T wave. The duration, amplitude, and morphology of the
QRS complex is useful in diagnosing cardiac arrhythmias,
conduction abnormalities, ventricular hypertrophy, myocar-
dial infarction, electrolyte derangements, and other disease
states. Diagnosis can been supported by computer analysis of
the ECG signal [8, 13]. Recently, special purpose embedded
hardware devices have been proposed [3, 4, 9, 10, 12, 15],
following the wide adoption of hardware description lan-
guages and Field Programmable Gate Arrays (FPGAs).

More than half of the above referenced hardware imple-
mentations deal with new algorithms for ECG QRS detec-
tion. In [10] a wavelet based approach is presented, in [15]
mathematical morphological filtering is put to use while in
[3, 4] geometrical properties of a phase-space portrait are ex-
ploited. All approaches present more than 99.50% sensitivity
of QRS detection on the MIT-BIH arrhythmia database [11].
However, not many details about the methodologies and the
design decisions taken during hardware design are given. In
[3] a working frequency of 82MHz is reported while in [10]
the frequency reported is 73MHz. In [4] the device presented
in [3] is used as a coprocessor in an embedded system with a
general purpose microprocessor.

In the remaining two referenced implementations, a
circuit-aware presentation is given. In [12] comparisons are
given between implementations of different QRS detection
algorithms reaching an operating frequency of 34MHz. In
[9] a low power implementation, used for implantable de-
vices is presented. This final implementation is considered
for fabrication as an Application Specific Integrated Circuit
(ASIC), compared to the FPGA prototypes of all other cases.
Also, detailed power measurements are given instead of op-
erating frequencies.

Our approach is similar to the one in [12] but uses a
higher level of design abstraction offering reduced design
time and increased code reuse and overall productivity. The
results obtained are better in terms of operating frequency
and comparable to those given in [10, 3, 4], for the same
hardware implementation FPGA platform. The advantage of
our work is that more design alternatives are considered, re-
sulting in better design space exploration.

3. BLUESPEC SYNTHESIS

Bluespec synthesis is a powerful industrial level environment
supporting iterative design refinements based on abstraction
and parameterization mechanisms. These are available in
Bluespec System Verilog (BSV), the proprietary language

used for input specification. While BSV is proprietary, it
is not completely strange to hardware designers since it is
based on System Verilog, which is an extension to Verilog.
Since Verilog’s syntax resembles that of ANSI C, BSV looks
familiar to software designers also. What BSV adds to Sys-
tem Verilog is the idea of atomic transactions for hardware
modeling. The behavior of a system is described as parallel
blocks of statements, called rules, that are executed as atomic
units (either all statements of a rule are executed or none is
executed). Each rule is executed under a specific condition
that when holds, the rule is said to fire.

BSV offers a number of modeling and design advantages.
First, BSV allows one to abstract out the concept of a ’func-
tional component’ as a reusable building block. Then, sep-
arately, one can express how to compose these functional
components into microarchitectures, such as combinational,
pipelined, iterative, or concurrent structures. For example,
a function of ’ActionValue’ type in BSV expresses piece of
sequential behavior. A function of type ’Rule’ expresses a
complete piece of reactive behavior, in fact a complete re-
active atomic transaction. All these components are ”first
class” data types, so one can build ”collections” such as
lists and vectors of ActionValues, Rules, and so on. Sec-
ond, BSV has some powerful ’generate’ mechanisms that al-
low the composition of microarchitectures flexibly and suc-
cinctly. For example, the microarchitectural structure can
be expressed using conditionals, loops, and even recursion.
These can manipulate lists of rules, interfaces, modules, Ac-
tionValues, and so on. Third, BSV has very powerful param-
eterization. One can write a single piece of parameterized
code that, based on the choice of parameters, results in dif-
ferent microarchitectures (such as pipelined vs. concurrent
vs. iterative, or varying a pipeline pitch, or using an alterna-
tive modules, and so on.).

Most importantly, the feature of BSV that makes all this
flexibility feasible is that BSV is based on synthesis from
atomic transactions. Each change in microarchitecture us-
ing above capabilities needs a corresponding change in the
control logic. For example, if two functional components
are composed in a pipelined or concurrent fashion, then they
may conflict on access to some shared resource, whereas
when composed iteratively, they may not. Each one of these
cases require different control logics. When designing with
RTL, it is simply too tedious and error-prone to even contem-
plate such changes and to redesign all this control logic from
scratch. Because of BSV’s synthesis from atomic semantics,
this control logic is resynthesized automaticallythe designer
does not have to think about it.

As an example, consider the case of a classical QRS de-
tection algorithm [8], which applies low-pass filtering, high-
pass filtering, derivation and averaging to the input signal
in order to isolate QRS complexes. An open source soft-
ware implementation of this algorithm [2] has been used as a
case study for all experiments found in the following section.
Looking at the code found in [2], detection is performed in
the following fragment:

fdatum = lpfilt(datum, 0) ;
fdatum = hpfilt(fdatum, 0) ;
fdatum = deriv2(fdatum, 0) ;
fdatum = abs(fdatum) ;
fdatum = mvwint(fdatum, 0) ;

984

LP
 HP

Deriv
 Integr

Figure 1: QRS detection filter cascade

Each code line is the application of a different filter to
the new input datum. Every filter has an internal buffer that
keeps enough previous values to perform the required com-
putation, and produce a new output. This output is passed as
input to the next filter, through fdatum. The way this code is
written forces each input to pass through all filters serially,
as shown in figure 1. This behavior can be written in BSV
with the following code fragment (only the low-pass and the
high-pass filters are shown for simplicity):

rule update_step1;
lpFilt.read(new_data);

endrule

rule update_step2;
hpFilt.read(lpFilt.write());

endrule

rule update_step3;
new_result<=hpFilt.write();

endrule

In the above code fragment, as said earlier, each rule
is a concurrent statement and all statements withing a rule
are executed in parallel. Rule update step1 gives new in-
put to the low-pass filter, rule update rule2 gives the output
of the low-pass filter as input to the high-pass filter and rule
update rule3 takes the output of the high-pass filter. Since
both filters need some time to compute their outputs, the
commands in the 3 rules cannot be executed in parallel due to
data dependencies. Bluespec synthesis examines the depen-
dencies and schedules the rules to be executed serially, from
top to bottom. Then, it generates the corresponding con-
troller. The storage elements and the computations of each
filter can be written as below, for the case of the high-pass
filter:

Vector#(‘HpBufferLength, Reg#(Int#(32)))
data <- replicateM(mkRegU);

Reg#(Int#(32)) y <- mkRegU();
Wire#(Int#(32)) new_data <- mkWire();
Wire#(Int#(32)) new_result <- mkWire();

rule update;
Int#(32) new_output;
new_output=y + new_data -

data[‘HpBufferLength - 1];
y <= new_output;

LP
 HP

Deriv
 Integr

Figure 2: FIFO connected QRS detection filter cascade

new_result <= data[‘HpBufferLength/2]
- new_output;

writeVReg(data, shiftInAt0(
readVReg(data), new_data));

endrule

However, for improved performance, FIFO queues can
be inserted between filters, instead of single wires, forming a
pipeline as shown in figure 2. While in the original C source
code this information can not be described, BSV can describe
it and Bluespec synthesis will generate a different controller.

The following code fragment shows the changes that
have to be made to the high-pass filter description in order
to insert FIFO queues in its input and output lines:

Vector#(‘HpBufferLength, Reg#(Int#(32)))
data <- replicateM(mkRegU);

Reg#(Int#(32)) y <- mkRegU();
FIFO#(Int#(32)) new_data <- mkFIFO();
FIFO#(Int#(32)) new_result <- mkFIFO();

rule update;
Int#(32) new_output;
new_output=y + new_data.first() -

data[‘HpBufferLength - 1];
y <= new_output;
new_result.enq(data[‘HpBufferLength/2]

- new_output);
writeVReg(data, shiftInAt0(
readVReg(data), new_data.first()));

new_data.deq();
endrule

This code changes only the type of the input and out-
put variables (new data and new result) and the way data
are passed into them (through the enq, deq and first method
functions). All computations are kept unchanged. However,
using the FIFOs enables the detection algorithm to execute
all filters in parallel, leaving FIFO synchronization to take
care of data dependencies, like in the code fragment below:

rule update;
Int#(32) temp1,temp2;
lpFilt.read(new_data);
temp1 <- lpFilt.write();
hpFilt.read(temp1);
temp2 <- hpFilt.write();
new_result<=temp2;

endrule

985

This last coding style offers a 10x performance gain,
when passed through an RTL synthesis environment. So,
BSV can be used to describe the algorithm in an abstract way
but also help in architectural explorations that offer perfor-
mance improvements that ANSI C can not cover. Note that
BSV specific syntactic constructs like the ��� ActionValue
assignment operator have very simple semantics but the ex-
planation of all of them is out of the scope of this work (for
details, see Bluespec reference guide [1]).

Orthogonal to the above microarchitectural considera-
tions, BSV has other features that help the implementation
of mathematical algorithms. BSV’s very strong type system
permits definition of abstract mathematical data types, such
as fixed-point data. Widths of data fields can be specified pre-
cisely, with detailed static checking of constraints between
widths of related data (for example, the width of the output
of a multiplier based on the widths of the operands).

4. EXPERIMENTAL RESULTS

In order to evaluate architectural exploration methodologies
and optimizations for the development of embedded diag-
nostic devices, we used (as briefly stated in the previous sec-
tion) an open source software implementation [2] of a clas-
sical QRS detection algorithm. The implementation follows
the digital filtering approach presented in [8], which applies
low-pass filtering, high-pass filtering, derivation and averag-
ing to the input signal in order to isolate QRS complexes.
The selection of the specific application is not determined
by our approach, which can easily be applied to other algo-
rithms implemented in behavioral C/C++ code. However, its
availability as open source code make it available to every
researcher or company involved in the field, which gives a
clear design time acceleration for the specific flow.

In [2], different implementations of the same basic al-
gorithm can be found. The first, called QRSDET1 in the
experimental results presented in this subsection, uses a me-
dian filter to find the average of the ECG signal over a period
of 80 ms. This solution presents QRS detection sensitivi-
ties near 99.7% and QRS detection predictivities near 99.8%.
The second, called QRSDET2, uses a mean filter which is
much more efficient in both software and hardware imple-
mentations. Moreover, it improves QRS detection sensitiv-
ities to 99.8% while QRS detection predictivities are unaf-
fected. The third, called QRSDET3, is generated from QRS-
DET2 after eliminating a search back technique presented in
[7], which reconsiders previous samples if a QRS complex
has not been found within a 1.5 R-to-R time interval. In this
case, QRS detection sensitivities and positive predictivities
drop to near 99.7%, which is quite acceptable for diagnostic
reasons, related to the performance improvements offered.
The final implementation, QRSDET4, ignores all peaks for
200ms following a QRS detection that may lead to large P
waves to be detected as QRS complexes and the following
QRS complex (within 200ms) to be ignored. The algorithm
of QRSDET4 is simpler and faster but the QRS detection
sensitivities drop to 99.2% and the predictivities to 99.5%.

For the hardware implementation of the proposed algo-
rithms we have used two types of behavioral transformations:
inlining and pipelining. Inlining treats modules used by other
higher level modules as inline functions, and exposes more
algorithmic constructs to the synthesis tool (more sentences),
resulting in more optimization. Pipelining forces the result-

Clock Through.
Algorithm Optim. Freq. Freq. Util.
QRSDET1 None 100MHz 0.1MHz 27.45%
QRSDET1 Inline 100MHz 0.11MHz 56.60%
QRSDET1 None 200MHz 0.09MHz 28.80%
QRSDET1 Inline 200MHz 0.099MHz 29.70%
QRSDET1 None 400MHz 0.11MHz 29.44%
QRSDET1 Inline 400MHz 0.18MHz 60.39%
QRSDET2 None 100MHz 0.47MHz 34.43%
QRSDET2 Inline 100MHz 1.01MHz 50.32%
QRSDET2 Pipeline 100MHz 20MHz 85.93%
QRSDET2 None 200MHz 0.50MHz 27.15%
QRSDET2 Inline 200MHz 1.47MHz 44.10%
QRSDET2 Pipeline 200MHz 20MHz 69.89%
QRSDET2 None 400MHz 0.58MHz 26.65%
QRSDET2 Inline 400MHz 1.15MHz 46.04%
QRSDET2 Pipeline 400MHz 13.33MHz 79.17%
QRSDET3 None 100MHz 0.46MHz 22.04%
QRSDET3 Inline 100MHz 1.16MHz 46.56%
QRSDET3 Pipeline 100MHz 33.33MHz 99.46%
QRSDET3 None 200MHz 0.61MHz 23.93%
QRSDET3 Inline 200MHz 1.57MHz 39.27%
QRSDET3 Pipeline 200MHz 50MHz 90.67%
QRSDET3 None 400MHz 0.71MHz 24.06%
QRSDET3 Inline 400MHz 1.24MHz 41.49%
QRSDET3 Pipeline 400MHz 80MHz 97.32%
QRSDET4 None 100MHz 0.46MHz 21.22%
QRSDET4 Inline 100MHz 1.14MHz 36.19%
QRSDET4 Pipeline 100MHz 33.33MHz 98.73%
QRSDET4 None 200MHz 0.61MHz 23.07%
QRSDET4 Inline 200MHz 1.6MHz 38.04%
QRSDET4 Pipeline 200MHz 66.66MHz 89.71%
QRSDET4 None 400MHz 0.72MHz 22.22%
QRSDET4 Inline 400MHz 1.6MHz 37.19%
QRSDET4 Pipeline 400MHz 100MHz 95.41%

Table 1: QRS detection implementations through HLS

ing implementation to run at the specified throughput fre-
quency. In other words, the generated circuit is forced to
produce new outputs with the specified frequency, regardless
of the overall time needed for each input to pass through all
computations (latency). When required, appropriate FIFO
queues are inserted to hold internal values of the pipeline ar-
chitecture. In BSV, each transformation requires different
coding style.

The summary of all conducted experiments is given in
table 1. The first column of table 1 shows the implemented
algorithm. The second shows the optimizations applied in
each case. The third column shows the clock frequency of
the device used in each experiment. For comparison reasons,
this device is an FPGA of the Virtex-II Pro device family [14]
from Xilinx (XC2VP30FF896-7) in all cases. The fourth col-
umn shows the throughput frequency of the generated hard-
ware device and is related to the selected optimization. Fi-
nally, the fifth column shows the percentage of the overall
device resources (logic cells, flip-flops, DSP blocks, mem-
ory, IO) dedicated for each implementation.

As it is shown in table 1, the QRSDET4 algorithm gives

986

better results both in terms of speed and area. This is ex-
pected as QRSDET4 involves less comparisons to select a
QRS peak. Moreover, QRSDET4, QRSDET3 and QRS-
DET2 use the median filter to find the moving average, which
is simpler in implementation than the mean filter used in
QRSDET1, as it has already been said. If quality of results
is also considered, QRSDET3 can be considered the most
efficient implementation.

The implementations for the QRSDET1 detection algo-
rithm can not be pipelined because of the median filter which
has an unknown iteration bound (at least in its implemen-
tation in [2]) and includes inter-iteration dependencies that
cause problems to pipelining. From the other three detec-
tion algorithms, pipelining offers great speed improvements.
Implementations with lower clock frequencies offer deeper
pipelining opportunities because they utilize slower compo-
nents that can be forced to operate in a deep pipeline. Imple-
mentations with higher clocks frequencies use faster compo-
nents, perhaps already internally pipelined, which can not be
forced to work in a deep pipeline. However, the combination
of the increased clock frequency and the not-so-deep pipeline
can offer drastically reduced final throughput frequencies.

For almost two times the experiments presented in table 1
(the ones that gave correct results and the ones that did not),
total design time was approximately one week using a Pen-
tium 4 3GHz Linux workstation. With this effort, the best
result obtained was the one in the last row of table 1, operat-
ing at 400MHz and producing new outputs at 100MHz, using
almost the entire FPGA device. Other interesting implemen-
tations are shown in rows 9, 12, 18, 27 and 30. All other
implementations are by no means useless however. Even an
implementation with 100KHz throughput frequency is more
than enough for the ECG signal which may reach at most
300Hz and its sampling rate most of the times may be a little
more higher than 1KHz. However, in an embedded SoC en-
vironment burst mode computations may be required at spe-
cific time intervals. Then, more advanced implementations
may be selected. Another advantage of low speed implemen-
tations is that they use a small portion of the FPGA device,
leaving room for other functionality to be implemented on
the same fabric.

5. CONCLUSIONS AND FUTURE WORK

HLS has been a design methodology and a hot research topic
for the past twenty years. The same has happened to com-
puter assisted biosignal detection and classification. These
two fields can be combined and advances in design through
HLS can be put to use for the design of efficient devices,
offering higher processing power and the ability to transfer
larger amounts of information more quickly. The main ex-
pectations from this combination are support for better man-
agement of the design complexity and reduction of the design
cycle all together, breaking the trend to compromise evalua-
tion of various design implementation options. Designing at
higher levels of abstraction allows a better coping with the
system design complexity, to verify earlier in the design pro-
cess and to increase code reuse.

Eventhough extensive experimentation has been per-
formed in the current work to support the combination of
HLS and computer assisted biosignal manipulation applica-
tions, there are still a lot that can be done. First of all, the
same approach can be applied to other biosignals except the

ECG or other applications for ECG, like classification, or
other algorithms for QRS detection. Another step would be
to install the generated hardware devices as coprocessors in
an embedded SoC platform, to build more advanced systems
offering advanced functionality. Finally, it would be interest-
ing to introduce power optimization to the whole flow aiming
at implantable and portable devices.

REFERENCES

[1] Bluespec. http://www.bluespec.com.
[2] Open source arrhythmia detection software. http://

www.eplimited.com/software.htm.
[3] M. Cvikl, F. Jager, and A. Zemva. Hardware implemen-

tation of a modified delay-coordinate mapping-based
qrs complex detection algorithm. EURASIP Journal on
Advances in Signal Processing, 2007(1), 2007.

[4] M. Cvikl and A. Zemva. Fpga-based system for ecg
beat detection and classification. In 11th Mediter-
ranean Conference on Medical and Biomedical Engi-
neering and Computing, pages 66–69. IFMBE, 2007.

[5] G. De Micheli. Synthesis and Optimization of Digital
Circuits. McGraw-Hill, 1994.

[6] D. Gajski, N. Dutt, A. Wu, and S. Lin. High-Level Syn-
thesis. Kluwer Academic Publishers, 1992.

[7] P. Hamilton. Open source ecg analysis. In Computers
in Cardiology, pages 101–104. IEEE, 2002.

[8] P. S. Hamilton and W. J. Tompkins. Quantitative in-
vestigation of qrs detection rules using the mit/bih ar-
rhythmia database. IEEE Transactions on Biomedical
Engineering, 33(12):1157–1165, 1986.

[9] T.-T. Hoang, J.-P. Son, Y.-R. Kang, C.-R. Kim, H.-Y.
Chung, and S.-W. Kim. A low complexity, low power,
programmable qrs detector based on wavelet transform
for implantable pacemaker ic. In International SOC
Conference, pages 160–163. IEEE, 2006.

[10] K. Kuzume, K. Niijima, and S. Takano. Fpga-based
lifting wavelet processor for real-time signal detection.
Signal Processing, 84(10):1931–1940, 2004.

[11] R. G. Mark, P. S. Schluter, G. B. Moody, P. Devlin, and
D. Chernoff. An annotated ecg database for evaluating
arrhythmia detectors. In 4th Engineering in Medicine
and Biology Society Conference, pages 205–210. IEEE,
1982.

[12] M. M. Peiro, F. Ballester, G. Paya, J. Belenguer,
R. Colom, and R. Gadea. Fpga custom dsp for ecg sig-
nal analysis and compression. In International Confer-
ence on Field Programmable Logic and Applications,
pages 954–958. IEEE, 2004.

[13] W. J. Tompkins. Biomedical Digital Signal Process-
ing: C-Language Examples and Laboratory Experi-
ments for the IBM PC. Prentice Hall, 1995.

[14] Xilinx. Virtex-II Pro and Virtex-II Pro X FPGA User
Guide, 2007.

[15] F. Zhang, J. Tan, and Y. Lian. An effective qrs detec-
tion algorithm for wearable ecg in body area network.
In Biomedical Circuits and Systems Conference, pages
195–198. IEEE, 2007.

987

