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ABSTRACT

A method for spectral estimation of a continuous-
domain signal, given by its sampled version only, is in-
troduced. Unlike the discrete Fourier transform (DFT),
the proposed approach reduces aliasing effects. The pro-
posed approach relies on finite-duration Sobolev func-
tions, for which the ideal sampling process is charac-
terized by means of an inner product operation. The
point-wise evaluation of the Fourier transform is based
on a Sobolev type inner product too, allowing for a min-
imax approximation approach to be derived and utilized.
Experimental results show that the proposed approach
is a preferred alternative over the DFT in cases where
spectral analysis of sampled signals is required.

1. INTRODUCTION

The discrete Fourier transform (DFT) is widely used
in spectral analysis of digital signals [1–4]. It describes
a finite duration sequence by means of discrete-domain
complex exponentials, where the DFT values themselves
serve as the representation coefficients. An additional
interpretation of the DFT was recently suggested in [5],
for which every single DFT value was considered to be
the average of the input sequence having been modu-
lated beforehand. Considering an ideal sampling proce-
dure, there are cases in which the DFT corresponds to
the Fourier transform of the continuous-domain signal;
one such case is periodic band-limited functions. It is
a well known fact, however, that in the general case of
finite energy signals, the DFT of a sample sequence is
related to the Fourier transform through aliasing. It is
also known that as the sampling step becomes shorter,
does the aliasing effect become negligible, as is often as-
sumed in practical situations. Within this context (and
albeit the aliasing effect), the DFT of a sampled sig-
nal may be viewed as an approximation procedure for
the Fourier transform of the original continuous-domain
signal itself.

Spectral analysis can also be carried out by Gabor
functions [6–9]. Gabor analysis of discrete-domain sig-
nals is closely related to the DFT, providing a time-
frequency representation of the input sequence. As is
the case for the DFT, Gabor analysis of sampled signals
does not necessarily correspond to the Gabor represen-
tation of the underlying continuous-domain signal, and
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the former may be viewed as an approximation proce-
dure of the latter, too.

The question raised in this work is whether there
exists an approximation procedure that minimizes the
aliasing effects that are inherent to the DFT. More pre-
cisely, can one suggest a procedure for approximating
the Fourier transform of a continuous-domain signal
given by its ideal samples only, while minimizing alias-
ing? Anti-aliasing filtering is commonly used by signal
processing practitioners. Nevertheless, these filters do
not necessarily comply with an ideal low pass opera-
tion and the DFT may still introduce aliasing. Further,
sampling the output of a low pass filter is equivalent to
orthogonally projecting the signal onto a shift-invariant
space; the generating function of this space is the mir-
rored version of the filter impulse response. In such
cases, the DFT still introduces aliasing and one should
utilize the shift-invariant model to approximate Fourier
transform values instead. Notwithstanding the shift-
invariant model, orthogonal projections introduce infor-
mation loss and by avoiding the low pass filtering op-
eration one may better cope with tasks such as Fourier
transform approximation.

A possible approach to this problem relies on a
Sobolev model of the original signal. Sobolev spaces
consist of smooth functions and they serve as the un-
derlying continuous-domain model in several signal pro-
cessing tasks [10–14]. More importantly, Sobolev func-
tions are dense in L2, implying that they can approxi-
mate any finite-energy function, e.g. the step function,
while attaining arbitrarily small approximation errors.
Furthermore, this set of functions includes exponential
functions, trigonometric functions, Gaussian-type func-
tions and Polynomials, describing a large class of signal
models that fit into this framework. The ideal sampling
process of finite duration Sobolev signals will be charac-
terized by means of an inner product operation and the
point-wise evaluation of their Fourier transform will be
characterized by means of a Sobolev type inner prod-
uct, too. Such an interpretation would be utilized then
for deriving a minimax approach for the approximation
task at hand.

2. APPROXIMATION OF LINEAR
FUNCTIONALS

Let Hp
2 be the Sobolev space of order p. This space con-

sists of all one-dimensional finite-energy functions de-
fined on a finite-support domain Ω ∈

�
for which their

first p derivatives are of finite energy as well. The cor-
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responding inner product is given by

〈x,y〉Hp
2

=

p∑

n=0

λn ·
〈
x(n),y(n)

〉
L2

, (1)

where

〈x,y〉L2
=

∫

Ω

x(t) · y(t) dt, (2)

and where the set of weights {λn} provides a positive
measure for 〈x,x〉Hp

2

. Considering the Fourier domain,

this restriction implies that

λ0 + λ1ω
2 + · · · + λpω

2p ≥ 0 (3)

would hold for all frequencies ω ∈
�

. The RKHS
property of the Sobolev space implies that there is a
unique function, the reproducing kernel ϕ(t), for which
x(τ) = 〈x(t), ϕ(t − τ)〉Hp

2

holds for every x ∈ Hp
2 . Let

Ω = (−π, π) and let x be an arbitrary Sobolev function.
Such a function can be expressed as

x(t) =
∑

n

a[n] · ejnt, (4)

where equality holds point-wise. The sample value
x(t = 0) is a linear bounded functional and by Riesz
representation theorem can be expressed by means of
an inner product operation

x(0) = 〈x (t), ϕ (t)〉H2
. (5)

The function ϕ(t) can be expressed by means of its
Fourier coefficients, too, giving rise to the following
derivation

x(0) =
∑

n

a[n] · ejn·0 (6)

=

〈
∑

n

a[n] · ejnt,
∑

m

b[m] · ejmt

〉

Hp
2

=
∑

n,m

a[n]b[m](λ0 + · · · + λpn
pmp)

∫

Ω

ej(n−m)t dt

= 2π
∑

n

a[n] b[n] (λ0 + · · · + λpn
2p).

Now, x is arbitrary yielding b[n] = [2π(λ0 + · · · +
λpn

2p)]−1 and

ϕ(t − τ) =
1

2π

∑

n

ejn(t−τ)

λ0 + · · · + λpn2p
. (7)

This reproducing kernel is Ω-periodic and several such
kernels are depicted in Figure 1.

Adopting the reproducing kernel framework, the
sampled version of a signal can be described by a set of
inner product operations involving {ϕ(t − tn)}n. This
set of functions constitutes a Riesz basis for the sam-
pling space given by

S = Span {ϕ(t − tn)}n , (8)
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Figure 1: Reproducing kernels of Sobolev spaces of sev-
eral orders p. The weights are λn =

(
p
n

)
and Ω =

(−π, π).

and the corresponding Gram matrix is given by

G(m, n) = ϕ(tm − tn). (9)

The orthogonal projection of x onto the sampling space
is then given by

PSx =
∑

n

an · ϕ(·, tn), (10)

where a = G−1c and c denotes the ideal samples of x;
that is, c[n] = x(tn). The sampled versions of both PSx
and of x are identical, while the former minimizes the
Sobolev norm among all possible functions that inter-
polate into c. It also holds that the only information
available from the sampled version of a Sobolev signal
corresponds to PSx. When considering shift-invariant
cases as in [15], the reproducing kernels are shown to be
exponential functions. Further, these functions describe
autoregressive stochastic processes, which in turn allow
one to determine proper Sobolev weights {λ}. Given the
sampled version of a signal, it is suggested here to use
a least square estimation method for extracting its au-
toregressive parameters, i.e. the Z-domain roots of the
autocorrelation sequence. It is then suggested to deter-
mine the s-domain roots of an autocorrelation function
by s = ln Z and set the Sobolev weights to be the coef-
ficient of the corresponding polynomial in s.

Following Riesz representation theorem, every linear
and bounded functional in a Hilbert space can be de-
scribed by means of an inner product operation that
involves the input signal x and a unique function, de-
noted by w. Given the sampled version of a signal x,
it was shown in [12] that the minimax approximation of

d = 〈x,w〉 is given by d̂ = 〈PSx, PSw〉. That is, the
latter term minimizes the maximum possible approxi-

mation error |d − d̂| among all possible Sobolev func-
tions that interpolate into c. This approximation can
be carried out by discrete domain means involving the
sampled versions of both the original signal, the analysis
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function and the Gram matrix of the sampling functions
given by (9). In particular,

〈PSx, PSw〉 = cT · G−1 · b, (11)

where b[n] = w(tn). The approximation error is then
given by

∣∣∣d − d̂
∣∣∣
2

=
∣∣∣〈x, w〉 − 〈PSx, PSw〉

∣∣∣
2

(12)

=
∣∣∣〈x − PSx,w − PSw〉

∣∣∣
2

≤

(∥∥∥x
∥∥∥

2

− cT G−1c

)
·
∥∥∥w − PSw

∥∥∥
2

,

providing a tight upper bound on the approximation
error. The analysis function w is analytically known
giving rise to

∥∥∥w − PSw

∥∥∥
2

= ‖w‖
2
− bT G−1b

=
∑

n

∣∣∣a[n]
∣∣∣
2

− bT G−1b, (13)

where a corresponds to the Fourier coefficients of w and
b[n] = w(tn) as in (11).

3. FOURIER TRANSFORM
APPROXIMATION

The Fourier transform can be described by means of
functionals. In particular, the point-wise evaluation of
X(ω) can be identified by a proper analysis function
wω(t) for which X(ω) = 〈x,wω〉H2

. Such an interpre-
tation would not hold for signals of infinite support; the
point-wise evaluation of X(ω) is not a bounded func-
tional in such a case. One may consider scaled and nor-
malized versions of the sinc(·) function and observe that
the DC component X(ω = 0) may be arbitrarily large
although the L2 norm is maintained fixed. Neverthe-
less, finite support signals do fit into this interpretation
and the Fourier transform of x ∈ L2(Ω) in such a case
is given by

X(ω) =
〈
x(t), ejωt

〉
L2

.

Assuming x is a Sobolev function, this L2 inner product
operation can be described by means of a Sobolev inner
product involving x and the analysis function wω which
is derived next. Let x(t) ∈ Hp

2 be given by (4) and let
the complex exponential function be given by

ejωt =
∑

n

b[n] · ejnt (15)

where b[n] = sin [π(ω − n)] /π(ω − n). The Fourier
transform of x is given by

〈
x, ejωt

〉
L2

= 2π ·
∑

n

a[n] · b[n]. (16)

Now, let wω(t) =
∑

n c[n] · ejnt. This function should

satisfy
〈
x, ejωt

〉
L2

= 〈x, wω〉H2
. It then follows that

∑

n

a[n] · b[n] =
∑

n

(
λ0 + · · · + λpn

2p
)
· a[n] · c[n] (17)

holds for every Sobolev function x. Therefore, c[n] =
b[n]/

(
λ0 + · · · + λpn

2p
)

and

wω(t) =
∑

n

1

λ0 + · · · + λpn2p
·
sin [π(ω − n)]

π(ω − n)
· ejnt.

(18)
This analysis function reduces to a single complex ex-
ponential for integer values of ω.

Having the uniformly sampled version of a signal,
one may apply (11) for approximating the Fourier trans-
form of the original signal at the required frequencies.
An alternative method for such an approximation is the
DFT given by,

XD [k] =

N−1∑

n=0

c[n] · e−j 2πnk
N . (19)

Each DFT value can be interpreted as a Riemann type
sum approximation of the Fourier transform at equally
spaced frequencies as will be shown next. Considering
a sampling step T ,

X(ω) =

∫

Ω

x(t) · e−jωt dt (20)

∼= T ·
∑

|n|<b π
T
c

x(nT ) · e−jωnT

∼= T · ejωt0 ·

N−1∑

n=0

c[n] · e−jωnT .

where t0 is the first sampling coordinate and where N
denotes the number of known samples. It then follows
that

X

(
2πk

NT

)
∼= T · e

2πjkt0
NT ·XD[k] (21)

where k = 0 . . .N − 1. There are cases in which this re-
lation holds with equality [2]; if a periodic band limited
signal is sampled an integer number of times N over one
period, such that N is at least 2M + 1 (where M is the
index of the highest non-zero harmonic), the DFT coef-
ficients of the sampled sequence are equal, up to a con-
stant factor N , to the corresponding Fourier coefficients
of the signal harmonics. However, this approximation
is not optimal for Sobolev functions and the minimax
approach may provide an alternative procedure for this
task.

4. EXPERIMENTAL RESULTS

Fourier transform approximation was carried out by
both the proposed approach and by the DFT while con-
sidering x to be the hat function x1(t) = 1 − |t|, |t| < 1

with its Fourier transform X1(ω) =
ˆ

sin (ω/2)
‹

ω/2
˜

2

.
The approximation error of both methods is shown in
Figure 2. The frequency range in this figure is

[
0, π

T

]

which corresponds to half of the sampling rate. The
complementary range

[
π
T , 2π

T

]
is not shown due to the

symmetry property of the DFT sequence around π
T ,

which prevents the DFT from properly approximating
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Figure 2: Spectral estimation comparison. Shown is
magnitude of the of the Fourier transform (solid), of
the DFT values (dots) and of the proposed approach
(x-marks) for the hat function. The frequency range
is

[
0, 2π

T

]
. The sampling interval is T = 0.2 and the

Sobolev order is p = 1. The DFT symmetry property
within the frequency range

[
π
T , 2π

T

]
is not shared by the

proposed approach. Also the proposed approach outper-
forms the DFT method in

[
0, π

T

]
too.

X(ω) there. It is noted that this symmetry property is
not shared by the proposed approach, making it suitable
for approximating spectral content of high frequencies,
too. Figure 3 further depicts SNR values as a function
of the sampling interval; the proposed approach out-
perfoms the DFT in this case too. SNR values were
calculated based on the frequency range

[
0, π

T

]
,

SNR = 10 log

∑bπ/T c
n=0

∣∣∣X
(

2πk
NT

)∣∣∣
2

∑bπ/T c
n=0

∣∣∣X
(

2πk
NT

)
− X̂[n]

∣∣∣
2 , (22)

where X̂ is either the DFT sequence or the sequence that
stems from the proposed approach. DFT values with an
index larger than N/2 correspond to negative frequen-
cies and this is the reason for excluding the frequency
range

[
π
T , 2π

T

]
from the SNR calculations. To further

demonstrate the performance of the proposed approach
within the low frequency band, another experiment was
carried out involving input signals that are band-limited
to π

T . These signals are given by

x2(t) =

bπ/T c∑

n=0

a[n] · cos(nt) + b[n] · sin(nt), (23)

where the coefficients {a[n], b[n]}
bπ/T c
n=0 are randomly

chosen from a uniform distribution occupying the inter-
val [0, 1]. Restricting x2(t) to Ω = [−π, π], its Fourier
transform is given by

X2(ω) =

bπ/T c∑

n=0

(
a[n] + b[n]

)sin [π(ω − n)]

ω − n
+

+
(
a[n] − b[n]

)sin [π(ω + n)]

ω + n
. (24)
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Figure 3: Spectral estimation comparison. Considering
the hat function, Shown are SNR values as a function
of the sampling interval . These values were calculated
based on frequencies lower than π/T , which is half of
the sampling rate. The Sobolev order is p = 1.

The experiment involved 100 realizations of x2(t) and an
SNR value was calculated for every realization by apply-
ing (22). The results are shown in Figure 4, for which
the proposed approach achieves higher SNR values in
most of the cases. Figure 5 depicts an experiment that
involves polynomial B-spline modeling. In this experi-
ment, a continuous-domain model was derived from the
known samples and the Fourier transform values were
calculated accordingly. The Sobolev order was p = 2
and the B-spline order was L = 4 (cubic).

Figure 6 depicts upper bounds on the approxima-
tion error of the proposed approach. Following (12), the

term ‖PSx‖
2

= cT G−1c converges to ‖x‖
2

as the sam-

pling step becomes shorter, while the term ‖w − PSw‖
2

converges to zero. Also, the rate of decay is proportional
to the Sobolev order p as shown in the Figure, too.

5. CONCLUSIONS

This work has introduced a new method for spectral
estimation of continuous-domain signals given by their
sampled version only. Based on Sobolev spaces, the pro-
posed approach reduces the aliasing effects that are in-
herent to the DFT. Sobolev spaces were utilized for de-
scribing the ideal sampling process by means of an in-
ner product operation and a similar interpretation was
used for point-wise evaluation of the contiguous domain
Fourier transform. This, in turn, allowed for a minimax
approximation approach to be derived. Experimental
results show that the proposed approach may provide a
preferred alternative over the DFT and over polynomial
modeling in cases where spectral analysis of sampled
signals is required. Since Sobolev functions are dense in
L2, our conclusion is that the proposed approach could
be instrumental in most spectral analysis tasks.
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Figure 4: Comparison of spectral estimation. Shown
are 100 realizations of bandlimited signals given by (23).
Every realization has undergone spectral analysis by
means of the DFT and by means of the proposed ap-
proach. SNR values correspond to frequencies lower
than π/T which is half of the sampling rate. The sam-
pling interval is T = 0.2 and the Sobolev order is p = 1.
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