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ABSTRACT
Reconstruction of multidimensional signals from the sam-
ples of their partial derivatives is known to be an important
problem in imaging sciences, with its fields of application in-
cluding optics, interferometry, computer vision, and remote
sensing, just to name a few. Due to the nature of the deriva-
tive operator, the above reconstruction problem is generally
regarded as ill-posed, which suggests the necessity of using
some a priori constraints to render its solution unique and sta-
ble. The ill-posed nature of the problem, however, becomes
much more conspicuous when the set of data derivatives oc-
curs to be incomplete. In this case, a plausible solution to the
problem seems to be provided by the theory of compressive
sampling, which looks for solutions that fit the measurements
on one hand, and have the sparsest possible representation in
a predefined basis, on the other hand. One of the most im-
portant questions to be addressed in such a case would be
of how much incomplete the data is allowed to be for the
reconstruction to remain useful. With this question in mind,
the present note proposes a way to augment the standard con-
straints of compressive sampling by additional constraints re-
lated to some natural properties of the partial derivatives. It
is shown that the resulting scheme of derivative compressive
sampling (DCS) is capable of reliably recovering the signals
of interest from much fewer data samples as compared to
the standard CS. As an example application, the problem of
phase unwrapping is discussed.

1. INTRODUCTION

Numerous applications are known in which one is provided
with the measurements of the gradient of a multidimensional
signal, rather than of the signal itself. Central to such appli-
cations, therefore, appears the problem of reconstruction of
signals from their partial derivatives subject to some a priori
constraints (which could be either probabilistic or determin-
istic in nature) [1]. One of such applications, which has been
chosen to exemplify the major contribution of this note, is the
problem of phase unwrapping. Note that solving this prob-
lem is known to be a standard procedure in, e.g., optical and
synthethic aperture radar (SAR) interferometry [2], stereo vi-
sion [1], blind deconvolution [3, 4], etc.

In order to specify the problem of phase unwrapping, let
F(x,y) be an arbitrary continuously differentiable function
defined over a closed subset of the real plane R2. If F hap-
pens to be the phase of a complex-valued function, it can only
be measured in its wrapped form, i.e. modulo2π . Formally,
the process of phase wrapping can be represented by its as-
sociated operator W : R2 → (−π,π]. In this notation, the
wrapped principal phase R is given as R = W [F ]. Specifi-

cally, the operator W adds to F a piecewise-constant func-
tion K : R2 →{2π k}k∈Z resulting in R = W [F ] = F +K that
obeys [5]:

−π < W [F (x,y)]≤ π, ∀(x,y) ∈ R2. (1)

In complex notation, the gradients of F and R can be de-
fined as

∇F =
∂F
∂x1

i+
∂F
∂x2

j

∇K =
∂K
∂x1

i+
∂K
∂x2

j, (2)

where i and j denote the unit vectors associated with the x-
and y-axis, respectively. Consequently, computing the gradi-
ent of the wrapped phase R using equations (2) yields

∇R = ∇W[F ] = ∇F +∇K. (3)

Finally, applying the wrapping operator W one more time to
both sides of (3) results in

W [∇W[F ]] = W [∇R] = ∇F +∇K +K′. (4)

Due the property of operator W to produce the values in in-
terval [−π,π], the term K +K′ vanishes as long as [2]

−π < ∇F ≤ π. (5)

Therefore, as long as the condition (5) above holds, the gradi-
ent of the original phase F can be unambiguously recovered
from the gradient of the corresponding principal phase R ac-
cording to

∇F = W [∇R] . (6)

From the above considerations it follows that, if the con-
dition (5) was known to hold then, given a measured R, an
estimate F̂ of the original phase F could be obtained as a
solution to the following optimization problem

F̂ = argmin
F

∫ ∫
‖∇F −W{∇R}‖2 dxdy, (7)

which amounts to solving a Poisson equation subject to ap-
propriate boundary conditions. Unfortunately, situations are
rare in which the condition (5) can be a priori guaranteed. In
this case, the estimate of ∇F as W[∇R] is contaminated by,
so called, residuals, which cause the solution of (7) to be of
little practical value.

In order to overcome the limitations of phase unwrapping
inflicted by using the gradients estimated according to (6),
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a magnitude of different approaches has been hitherto pro-
posed [2]. In the current note, we introduce a different so-
lution to the problem which is based on the concepts of the
theory of compressive sampling [5, 6, 7, 8, 9, 10]. In par-
ticular, let Γ ⊂ R2 be a finite discrete subset over which the
values of F need to be recovered. Let further Γ0 denote a sub-
set of those points in Γ at which the condition (5) is known
to hold, and hence at which the gradient ∇F estimated ac-
cording to (6) can be assumed to be errorless. (Note that the
subset Γ0 can be identified based on analysis of the field of
residuals as detailed in [2]). Subsequently, we first recover
the values of ∇F over the whole Γ from its incomplete mea-
surements over Γ0, followed by estimating the original phase
F using (6). Moreover, in addition to the standard constraints
of compressive sampling, we propose to use the constraints
stemming from the nature of the gradient as a potential field,
viz.

∂F(x,y)
∂x∂y

=
∂F(x,y)

∂y∂x
. (8)

We will refer to the problem of reconstruction of F from
{∇F(x,y}(x,y)∈Γ0 as the problem of derivative compressive
sampling (DCS), and show that using (8) allows considerably
reducing the cardinality of Γ0, while preserving a predefined
error rate.

The remainder of this paper is organized as follows. Sec-
tion 2 provides an overview of compressive sampling, and
shows how this theory can be used for solution of the prob-
lem of phase unwrapping. In Section 3, some necessary tech-
nical details are specified. The performance of the method is
analyzed in Section 4, while Section 5 finalizes the paper
with a discussion and an outline of our future research direc-
tions.

2. DERIVATIVE COMPRESSIVE SAMPLING

The theory of compressive sampling addresses the problem
of perfect reconstruction of signals of interest from their sub-
critically sampled measurements [5, 6, 7, 8, 9, 10, 11]. In the
case when incomplete measurements of the derivatives of the
signals are available, the resulting reconstruction problem is
refereed to as derivative compressive sampling.

2.1 Basics of Compressive Sampling
The idea of compressive sampling was first formulated by
D. Donoho [6] in the form of the, so called, generalized un-
certainty principle. In this initial setup, a bandlimitted sig-
nal f (t) ∈ L2(R) in used for transmission over a channel, in
which it “loses” its values on a subset T . Formally, one can
define

r (t) = (I−PT ) f (t)+n(t), (9)

where I denotes the identity operator, n(t) is observation
noise, and PT denotes the spatial limiting operator of the
form

PT f (t) =
{

f (t), t ∈ T
0, otherwise

(10)

The second operator used in [6] is a band-limiting opera-
tor defined as given by

PΩ f (t)≡
∫

Ω

f̂ (ω)e2πıωtdω, (11)

where f̂ (ω) denotes the Fourier transform of f (t).

The main goal of compressive sampling is to reconstruct
the transmitted signal f from the noisy recieved signal r. The
possibility of such a recovery is assured by Theorems 2 & 4
in [6] asserting that if |Ω| |T c| < 1 (with T c being the com-
plement of T ) there exists a linear operator Q and a constant
p such that

‖ f −Q[r]‖ ≤ p‖n‖, (12)

where p ≤
(

1−
√
|T c| |Ω|

)−1
. Specifically, the reconstruc-

tion operator Q is given by

Q = (I−PT PΩ)−1 =
∞

∑
k=0

(PT PΩ)k . (13)

Moreover, the resulting solution is unique, and it can be ap-
proximated by truncating the Neumann series in (13) at some
finite k = N.

An addition impetus to the theory of compressive sam-
pling has been given in [7, 8, 9] via introducing the concept
of two orthonormal bases Φ and Ψ of Rn, which are used for
sampling and signal representation, respectively. Moreover,
central to the modern theory of compressive sampling are the
notions of
• Sparsity, in the sense that signals can be represented by

a relatively small number of non-zero coefficients in a
properly chosen Ψ, and

• Incoherence, which represents the duality between the
sampling Φ and representing Ψ domains, where the co-
herency

µ(Φ,Ψ) =
√

n max
∣∣ΦT

Ψ
∣∣ (14)

remains low. Note that here n is the number of vectors in
the basis.
In its typical setting, compressive sampling refers to the

case when an n-dimensional signals f has to be recovered
from its m measurements

yk = 〈 f ,φk〉 , k ∈ M ⊂ {1, . . . ,n} (15)

where m = #M and m < n. Let ΦM be the n×m matrix whose
columns are formed by those φk for which k ∈ M. Then,
assuming that the signal f can be represented as f = Ψc, for
some coefficient vector c ∈ Rn, the reconstruction is carried
out via solving

min
c
‖c‖1 =

n

∑
k=1

|ck|, s.t. Φ
T
MΨc = y, (16)

where y ∈ Rm stands the vector of m measurements in (15).
The above problem can be solved by means of linear pro-

gramming which, among all solutions obeying the measure-
ment constraint ΦT

MΨc = y, picks the one that has the spars-
est representation in the domain of Ψ as measured by the
`1-norm of c. Moreover, Theorem 1.2 derived in [10] defines
a bound on the number of measurements m

m ≥C µ
2(Φ,Ψ)S logn (17)

for which perfect recovery is possible. Note that in (17), C is
a constant, while S denotes the number of non-zero elements
in ΨT f .
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2.2 Reconstruction from Partial Derivatives

In the case when only partial derivatives of a signal of interest
are available, the sampling operator of compressive sampling
becomes the kernel of a derivative operator. In particular, in
the 2-D case, we are given the measurements of Fx = ∂F/∂x
and Fy = ∂F/∂y. At this point, there are two possibilities to
find F . The first would be to define Φ to be a discretized ver-
sion of the 1st-order derivative operator. This choice, how-
ever, could result in relatively large values of the coherency
µ(Φ,Ψ) for the case when Ψ is a wavelet orthobasis (which
is the choice in the present study). This would, in turn, in-
crease the bound in (17), which could be unacceptable for
practical considerations. On the other hand, one can define
Φ to be the Dirac comb (i.e., Φ = I). In this case, the partial
derivatives can be recovered first, followed by integrating the
latter using (7).

To proceed with the second of the above-mentioned pos-
sibilities, we turn to a discrete setup in which F , Fx and Fy
are considered to be n× n matrices. In this case, the max-
imal possible number of measurements is equal to 2n2, and
hence M ⊂ {1,2, . . . ,2n2}. Specifically, we are interested in
the case when m = #M < n2.

In 2-D, the partial derivatives Fx and Fy can be approxi-
mated according to

Fx ' FD

Fy ' DT F, (18)

where D is 2-D difference matrix

D =



1 0 · · · 0 0
−1 1 · · · 0 0

0 −1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
0 0 · · · −1 1

 (19)

(Note that the last column of D defines the boundary condi-
tion.)

For the sake of notational simplicity, let Φ⊗ = Φ⊗Φ

and Ψ⊗ = Ψ⊗Ψ, where ⊗ stands for the Kronecker ma-
trix product. Moreover, since the sampling sets for the x-
and y-derivatives may be in general different, we denote the
corresponding sampling matrices by Φ⊗

x and Φ⊗
y , respec-

tively. Hence, assuming that there exist coefficients cx and
cy such that vec(Fx) = Ψ⊗ vec(cx) and vec(Fy) = Ψ⊗ vec(cy)
(with vec denoting the operation of matrix concatenation),
the measurement constraints of the DCS problem are defined
as

Φ⊗
x Ψ⊗ vec(cx) = Gx

Φ⊗
y Ψ⊗ vec(cy) = Gy,

(20)

where Gx and Gy are the vectors of measured derivatives. In
what follows, the constraints in (20) will be referred to as
primary.

On the other hand, the cross-derivative (secondary) con-
straints in (8) can now be expressed as

∇x
{

Ψ cyΨ
T }︸ ︷︷ ︸

Fy

= ∇y
{

Ψ cxΨ
T }︸ ︷︷ ︸

Fx

. (21)

Figure 1: Circular integration paths involving the (i, j) pixel.

Using some standard rules of the matrix calculus [12], the
above equation can be rewritten as[ (

DT
Ψ

)
⊗Ψ︸ ︷︷ ︸

Bx

−Ψ⊗
(
DT

Ψ
)︸ ︷︷ ︸

By

][
vec(cx)
vec(cy)

]
︸ ︷︷ ︸

c

= 0 (22)

The matrix B = [Bx,−By] is a full (row) rank matrix,
whose condition number is approximately equal to 5n/4.
In the DCS formulation, this matrix of secondary (cross-
derivative) constraints is combined with the primary con-
straints to result in the following optimization problem

min
c
‖c‖1 =

n2

∑
k
|cx(k)|+

n2

∑
k
|cy(k)|, (23)

subject to  Φ⊗
x Ψ⊗ 0
0 Φ⊗

y Ψ⊗

Φ⊗
c Bx −Φ⊗

c By

c =
[

Gx
Gy

]

where Φ⊗
c denotes a sub-sampling operator which removes

from the secondary constraints (21) those which are linearly
dependent on the primary constraints (20) (see below).

Finally, having estimated the partial derivatives Fx and
Fy as Ψ⊗cx and Ψ⊗cy, respectively, we recover the function
(phase) F as a solution to (7).

3. RECOVERING PRIMARY CONSTRAINTS FROM
SECONDARY CONSTRAITNS

Since the gradient ∇F is a potential field, its integral over any
closed path in R2 should be equal to zero, namely∮

∇F(s)ds = 0. (24)

Moreover, in the discrete case, the shortest of such paths con-
nects each 4-pixels neighborhood, as shown in Fig. 1. The
shown integration paths result in the following set of equa-
tions

q1 : Fy (i, j) = Fy (i+1, j)+Fx (i, j)−Fx (i, j +1)
q2 : Fy (i, j) = Fy (i−1, j)+Fx (i−1, j)−Fx (i−1, j)
q1 : Fx (i, j) = Fx (i, j +1)+Fy (i, j)−Fy (i+1, j)
q3 : Fx (i, j) = Fx (i, j−1)+Fy (i+1, j−1)−Fy (i, j−1) .

(25)
The constraint equations in (25) can be used to enlarge

the set of primary constraints through recovering some of un-
known values of Fx and Fy from those of their known neigh-
bors. This procedure can be implemented using Algorithm 1
provided below.
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Algorithm 1 Optimal recovery of primary constraint
while A pixel can be recovered do

for i, j = 1 to n do
if all 3 elements in q1 & q2 are knwon then

Fy (i, j) = (q1 +q2)/2
else if all 3 elements in q1 are knwon then

Fy (i, j) = q1
else if all 3 elements in q2 are knwon then

Fy (i, j) = q2
end if
if all 3 elements in q1 & q3 are knwon then

Fx (i, j) = (q1 +q3)/2
else if all 3 elements in q1 are knwon then

Fx (i, j) = q1
else if all 3 elements in q3 are knwon then

Fx (i, j) = q3
end if

end for
end while

Figure 2: Recovering the indices of primary constraint for
256×256 test images.

Performing Algorithm 1 is a critical step as it maximizes
the cardinality of the set of primary constraints, thereby im-
proving the overall probability of recovering the true gradi-
ent. Typically, five iterations of the algorithm are sufficient
to complete the task. Fig. 2 provides a quantitative charac-
teristics of the algorithm which have been averaged over a
number of 256×256 test images.

Finally, in order to exclude any linear dependency be-
tween the primary and secondary constraints, the matrix Φ⊗

c
in (23) should be identified. However, in practice, instead of
finding the matrix, we simply remove the rows of B which
are linearly dependent on the primary constraints. This can
be done using Algorithm 2.

It should be pointed out that while Algorithm 1 maxi-
mizes the number of primary constraints, Algorithm 2 guar-
antees that the constraint matrix in (23) is of full row rank.
After the execution of both algorithms, the problem of recov-
ering the (sparse) representation coefficients c can be solved
by linear programming. However, in the 2-D case, such a
solution could be rather impractical considering the size of

Algorithm 2 Elimination of dependent rows of B
for i, j = 1 to n do

if Fy(i, j): known AND Fx(i, j): known then
if Fy(i+1, j: known OR Fx(i, j +1: known then

B(i j, :) = [ ] ;
end if

else if Fy (i, j): known OR Fx (i, j): known then
if Fy (i+1, j): known AND Fx (i, j +1): known
then

B(i j, :) = [ ] ;
end if

else if Fy (i, j): unknown AND Fx (i, j): unknown
then

if Fy (i+1, j): known AND Fx (i, j +1): known
then

B(i j, :) = [ ] ;
end if

end if
end for

(a) (b)

Figure 3: (a) Original phase; (b) Wrapped phase.

signals under consideration. To alleviate the computational
burden, in the current work, the sparse solutions have been
found using the algorithm detailed in [13].

4. RESULTS

We demonstrate the performance of our algorithm using a
fringe pattern from the fringe phase data [14]. The original
phase and its wrapped version are shown in Figure (3(a)) and
(3(b)), respectively. Throughout the experimental study, Ψ

was defined to be an orthogonal basis matrix corresponding
to the nearly symmetric wavelet of I. Daubechies having six
vanishing moments.

In our first numerical experiment, we compared the per-
formance of the DCS algorithm with that of the standard
CS method. Note that the latter can be obtained from the
former by simply discarding the cross-derivative constraints
(21). Through analyzing the field of residuals corresponding
to the estimated phase gradient (see Fig. 4(b)), 23.76% of the
total number of gradient samples were dismissed as unreli-
able. Fig. (4(a)) shows the unwrapped phase estimated using
the DCS algorithm. The mean-squared error (MSE) of the
estimation was found to be 0.116%. As a comparison, the
same solution was computed using the standard CS, whose
MSE was found to be equal to 2.35%. Thus, one can see
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(a) (b)

Figure 4: (a) Original phase estimated by the DCS method;
(b) Residual points.

that augmenting the primary constraints of CS by the cross-
derivative constraints results in substantial reduction in the
level of MSE.

In our second experiment, we fixed the MSE of 2.35%
as obtained by the standard CS above, and further reduced
(via random exclusion) the number of available data points to
find the percentage for which the DCS method would result
in the same error rate. This percentage was found to be equal
to 60%. As a comparison, for the same number of excluded
data points, the standard CS resulted in MSE of 8.45%.

5. CONCLUSION

The main idea of derivative compressive sampling is to aug-
ment the constraints of the standard CS by some additional
constraints related to the properties of the gradient as a poten-
tial field. In this case, the reconstruction algorithm resolves
the ambiguity of “too few samples” not by only looking for a
solution of maximal sparseness in the domain of Ψ, but also a
solution that complies with the properties of a gradient field.

The proposed DCS algorithm is performed in two stages:
first, the partial derivatives of a signal of interest are recov-
ered from their sub-critically sampled measurements, fol-
lowed by integrating the estimated derivatives via solving a
Poisson equation. It should be noted, however, that it is pos-
sible to get rid of the second stage via defining the sampling
system Φ to be a discretized version of the 1st-order deriva-
tive operator. In this case, the resulting CS problem should be
capable of directly recovering the original signal. Unfortu-
nately, this solution seems to be applicable only for recover-
ing relatively smooth signals. This is because the derivative-
based Φ can be incoherent only with bases of smooth (slow
varying) functions, thereby ruling out the use of wavelets and
the relatives thereof.

The current research results leave open a lot of exciting
theoretical questions (e.g., as to what other constraints could
be incorporated into the problem of CS). Moreover, it is still
to be proved what bases could be considered to be optimal
for representing the gradients of natural scenes [15]. Com-
putation efficiency of DCS is another issue that should not
be overseen when practical applications of DCS are of con-
cern [16].
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