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ABSTRACT 
In this paper, we propose a texture classification method 
using local texture features BDIP (block difference of in-
verse probabilities) and BVLC (block variation of local cor-
relation coefficients) in wavelet domain. BDIP and BVLC 
are known to be good texture features which are bounded 
and well normalized to reduce the effect of illumination and 
catch the own properties of textures effectively. In the 
method, a target image is first decomposed into wavelet 
subbands. BDIPs and BVLCs are then computed in wavelet 
subbands. The means and standard deviations of subband 
BDIPs and BVLCs and the subband standard deviations are 
fused into a texture feature vector. Finally, the Bayesian dis-
tance between the feature vector of a query image and that 
of each class is stably measured and it is classified into the 
class of minimum distance. Experimental results for three 
test databases (DBs) show the proposed method yields ex-
cellent performances. 

1. INTRODUCTION 

Texture classification is one of tasks essential to various 
image processing fields such as image retrieval, image seg-
mentation, pattern recognition, and robot vision. In the lit-
erature, one can find numerous texture feature extraction 
methods which are performed in the spatial domain. A lot of 
them utilize gradient operators, Markov random field mod-
els, or gray-level co-occurrence probability (GLCP) to ob-
tain texture features [1], [2]. GLCP [1] is defined as the joint 
probability between a quantized center pixel and one of 
quantized neighboring pixels. Since various neighbors are 
available according to the quantization scheme and their 
distances and directions about a center pixel, diverse GLCPs 
may be defined. Texture features extracted from GLCPs 
include energy, variance, correlation coefficient, entropy, 
sum entropy, difference entropy, information of correlation, 
and so on. 

Spatial-domain texture feature extraction methods men-
tioned above have a weak point that an image to be classified 
is analyzed at a fixed scale. Many researchers have intro-
duced Gabor filters or wavelet transform into texture classifi-
cation to overcome this problem [3]-[5]. Especially, wavelet 
transform which allows us multiresolution analysis has been 
widely applied to image processing areas such as image 
compression and image retrieval as well as texture classifica-

tion. Wavelet transform decomposes a spatial image into 
spatial-frequency images that are called subbands. The sub-
bands have different resolutions according to decomposition 
levels, each of which has either smooth or detail information 
on the spatial image. 

Among recent texture classification methods using 
wavelet transform, Selvan et al. [3] proposed a method which 
uses singular value decomposition (SVD) to extract the dis-
tribution parameters of singular values in the detail wavelet 
subbands as texture features and classify a target image by 
the minimum Kullback-Leibler distance classifier. Van de 
Wouwer et al. [4] extracted two texture feature sets, features 
from GLCP and coefficient distributions from the detail sub-
bands. Wang et al. [5] adopted subband energies in wavelet 
packet transform domain as texture features and linear re-
gression on pairs of subband energies for classification. 
Many other wavelet-based methods are also found in [6]-[8]. 

Besides the studies mentioned above, there have been 
works worthy of notice that fuse local texture features BDIP 
and BVLC and apply them to image retrieval [9], [10], face 
detection [11], ROI determination [12], and volume segmen-
tation [13], resulting in yielding excellent performances. 
BDIP is a kind of nonlinear gradient operator normalized by 
local maximum, which is known to effectively measure local 
brightness variations so that edges and valleys are extracted 
well. BVLC is a maximal difference between local correla-
tions according to orientations normalized by local variance, 
which is known to measure texture smoothness well [9]. The 
excellent performance of BDIP and BVLC comes from that 
both of them are bounded and well-normalized to reduce the 
effect of illumination. It seems to be well matched with the 
color constancy that the human visual system tries to lessen 
the influence of illumination to perceive a scene. Especially 
in [10], both of BDIP and BVLC were modified for the ap-
plication on the wavelet domain, which was shown to pro-
duce a somewhat noticeable performance improvement in 
image retrieval. 

In this paper, we propose a texture classification method 
using the fusion of moments of subband coefficients, sub-
band BDIPs, and subband BVLCs. As moments, their means 
and variances are used which are global statistics of local 
features related to local statistics (local variation and correla-
tion) in a moving window. The classical Bayesian classifier is 
chosen as a classifier. Section 2 explains GLCP and Haralick 
features, spatial-domain BDIP and BVLC, and wavelet-
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domain BDIPs and BVLCs. In Section 3, the proposed clas-
sification method is described. Section 4 discusses experi-
mental results and Section 5 shows the conclusions. 

 
2. CONVENTIONAL TEXTURE FEATURES 

In this section, we describe the conventional features which 
are partly used in the proposed method or in some existing 
methods to be compared for performance evaluation. 

 
2.1 GLCP and Haralick Features 
The estimate of joint probability required to compute 
Haralick features is obtained by averaging GLCPs over inter-
ested distances and orientations as follows: 
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where P(i, j) denotes the estimate of joint probability and 
Pr(i, j | d, θ, Q) a GLCP or relative frequency of a pixel pair 
measured in a distance d between the pair, its orientation θ, 
and a quantization scheme Q for the pair quantized into i 
and j, respectively. The parameter K is the quantity related to 
the probability of (d, θ, Q). In [1], Haralick et al. used (1) to 
compute 28 textural features such as energy, variance, corre-
lation coefficient, entropy, sum entropy, difference entropy, 
information of correlation and so on. 

 
2.2 BDIP and BVLC in the Spatial Domain 
Spatial-domain BDIP for a target image I is defined as 
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where I(x, y) denotes the value at a pixel (x, y) in the image I, 
R(x, y) a local region whose center is the pixel (x, y), |R(x, y)| 
the number of pixels in the region, and Imax(x, y) the maxi-
mum value in the local region. The numerator is selected as a 
representative gradient in the local region, which is defined 
by the averaged difference between the maximum pixel value 
and each pixel value in the local region, and the denominator 
as a representative value in the region, which is defined by 
the maximum pixel value. So, the division gives the result of 
gradient operator normalized by the representative, which 
yields a sketch-like image. It is shown in a BDIP image that 
object boundaries are localized well, and moreover, the in-
tensity variation in dark regions is more emphasized [6], [7].  

The computation of BVLC starts from correlation coef-
ficients in a local region, which are defined as 
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where r denotes a shifting orientation and μ(x, y) and σ(x, y) 

are the mean and standard deviation in a local region R(x, y), 
respectively. The terms μ((x, y)+r) and σ((x, y)+r) are the 
mean and standard deviation in a local region shifted by r 
from (x, y), respectively.  

BVLC is then defined as 
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where Ok denotes a set of orientations with r of distance k. 
For instance, Ok may be chosen as Ok = {(–k, 0), (0, – k), (0, 
k), (k, 0)}. The value of BVLC is determined as the differ-
ence between the maximum and minimum values of the local 
correlation coefficients according to orientations. The higher 
the degree of roughness in the local region is, the larger the 
value of BVLC [6], [7]. 

 
2.3 Wavelet-Domain Features 
In wavelet transform or decomposition, a two-dimensional 
image is filtered by LPF (low pass filter) and HPF (high pass 
filter) along the horizontal direction and vertical direction, 
and so one level decomposition yields four subbands: one 
smooth subband (LL) and three detail subbands (LH, HL, 
and HH). Consecutively, the subband LL may be further de-
composed in the same way. In general, each subband is 
downsampled by two to remove redundancies and in result 
the total size of four subbands becomes the same as that of 
the decomposition input.  

Let Wl,b be a subband image in the lth level where b de-
notes one of four subband, LL, LH, HL, and HH. BDIP in 
the wavelet domain Wl,b is defined as [7] 
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where Wl,b(p, q) denotes the wavelet coefficient at (p, q) in 
the subband Wl,b. Ml,b(x, y) is the maximal value in a local 
region R(x, y) in the subband Wl,b. Note that the denominator 
is given not by the corresponding subband but by the smooth 
subband Wl,LL at the same level. It makes pixels on the same 
position in four subbands of the same level have the same 
representative. 

The local correlation coefficient for BVLC in the wave-
let subband Wl,b is simplified from the original BDIP as [7] 
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where ν(x, y) denotes the mean absolute difference between 
pixels in a local region R(x, y) and ν((x, y)+r) the correspond-
ing value in the local region shifted by r from (x, y). The ori-
entation set may be selected as Ok = {(–k, 0), (0, –k)}. BVLC 
is then computed as 
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Fig. 1. Block diagram of the proposed texture classification. 

 
3. PROPOSED TEXTURE CLASSIFICATION 

METHOD 

In this section, we describe our classification method whose 
block diagram is shown in Fig. 1. An image I is first decom-
posed into a set of several subband images WI by wavelet 
transform. Next, a subband BDIP image WD and a subband 
BVLC image WV are obtained for each subband. Then, 
means and standard deviations of subbands, subband BDIPs, 
and subband BVLCs are calculated as texture features. Fi-
nally, the feature vector f is classified based on the predefined 
statistics of classes in a database. 

In [6] and [7], BDIPs and BVLCs in the spatial and 
wavelet domains are extracted from 2×2 nonoverlapped re-
gions which are partitioned from the image I or subband im-
age WI so that the resulting size of feature images is a quarter 
of an original image. On the other hand, we extract them with 
a 3×3 moving window for every pixel so that the resulting 
size of feature images is equal to that of an original image. 
BDIP in the spatial domain is computed by (2) and BDIP in 
the wavelet domain by (5), respectively. However, we decide 
here that all BVLCs in the spatial and wavelet domains are 
computed according to the original definitions of (3) and (4) 
in the four orientations of k = 1. 

The feature vector f for a target image consists of sub-
vectors fl,b, each of which is originated from each subband 
Wl,b as follows: 

],,,,[, l,bl,bl,bl,bl,b WIWVWDWVWDbl σσσμμ=f             (8) 

where 
l,bAμ and 

l,bAσ are mean and standard deviation of an 

output image A ∈ {WI, WD, WV}, respectively. Since the 
subband mean is almost zero, it is excluded in the feature 
vector. The feature vector is driven to the Gaussian Bayes 
Classifier (GBC). The distance D between a class C and a 
target image I of a feature vector f is given as 

D(C | I) = C
T

CCC SμfSμf ln)()( 1 +−− −            (9)  

where μC and SC denote the mean vector and the covariance 
matrix of trained features in the class C, respectively. The 
target image I is then decided as C* which gives the mini-
mum distance as follows: 
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},,,{ 21
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where N denotes the number of classes.  
For stabilization of distance measurement, the denomi-

nator terms of BDIP in (2), (5), and (3) are limited to Imax < 2, 

Ml,LL < 2, and σ 2 < 2, respectively. Moreover, diagonal ele-
ments of the covariance matrix SC in (9) are limited to 1 for 
wavelet feature. The values of BDIP and BVLC in (2), (5), 
(4), and (7) are adjusted so as to be in the range of [0, 255]. 

 
4. EXPERIMENTAL RESULTS 

In this section, the performance of the proposed method is 
evaluated with three image DBs derived from Vistex [14] 
and Brodatz [15]. The first two DBs, named VS1 and BR1 
here, are the same as DBs used in [4] and in [5], respectively. 
As mother images, VS1 has 30 Vistex images of size 512× 
512 and BR1 40 Brodatz images of size 640×640, and the 
third DB, called BR2, shares the identical mothers of BR1 
but of different size 512×512. Each mother in VS1 and BR2 
consists of a class where the elements are 64 subimages of 
size 64×64 partitioned without overlapping from the mother 
image. A half of 64 subimages for each class are randomly 
selected for training and the other half for testing. In BR1, 
the mother image is partitioned into 81 subimages of size 
128×128 with overlapping, and 40 subimages are for training 
[5]. 

The pair of Haar filters is chosen for wavelet transform 
whose decomposition level is just one without downsam-
pling. Each of four subbands has 5 features, which results in 
the feature vector dimension of 20. BDIPs and BVLCs in 
the spatial and wavelet domains are computed at all pixels 
and a local region is defined as a 3×3 moving window cen-
tered at each pixel. Symmetric extension is chosen for image 
boundary processing. The performance of texture classifica-
tion is measured as the average rate of test subimages classi-
fied correctly, which is written as  
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where N denotes the number of classes for each DB and NTn 
and NCn the number of test subimages and the number of 
correct decisions for the nth class, respectively. 

For performance comparison, we also compute eight 
other sets of texture features and measure their performances 
when substituting the feature vector f with each of them in 
Fig. 1. Table 1 shows the average rates of correct decision 
obtained by various methods for VS1 and BR2. Haralick 
denotes the set of 8 Haralick features derived from GLCP: 
energy, variance, correlation coefficient, entropy, sum en-
tropy, difference entropy, information of correlation, and 
difference mean, where the distances include d = 1 and 2 and 
the orientations θ = 0, 45, 90, and 135°, and the quantization 
scheme Q has 256 levels. BDIP and BVLC mean the set of 
the global mean, standard deviation, and correlation coeffi-
cient of the spatial BDIP and the set of those of the spatial 
BVLC, respectively. BDIP + BVLC corresponds to the fu-
sion of them and so its feature dimension is doubled. WI is 
composed of only standard deviations for four subbands. WD 
and WV have the global means and standard deviations of 
subband BDIPs and those of subband BVLCs, respectively. 
WD + WV stands for their fusion. 
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Table 1. Average rates of correct decision [%] 

DB 
Feature(s) VS1 BR2 Feature 

dimension

Haralick 93.1 97.3 8 

BDIP 74.1 84.1 3 
BVLC 60.6 75.9 3 
BDIP + BVLC 92.0 98.5 6 

WI 83.9 90.2 4 
WD 95.7 99.1 8 
WV 92.3 94.8 8 
WD + WV 99.0 99.5 16 
WI + WD + WV 99.0 99.9 20 

 
In Table 1, we can see that BDIP is much better than 

BVLC and their fusion produces great gains of 17.9% and 
14.4% for VS1 and for BR2, respectively. For BR2, WI is 
much worse than BDIP + BVLC. WD is also better than WV 
as in the spatial domain. The proposed method yields the best 
performance for both of VS1 and BR2. For VS1, our method 
gives 5.9% and 7% gains over Haralick and BDIP + BVLC, 
respectively. For BR2, the corresponding gains amount to 
2.6%, 1.4%, and 0.4% over Haralick, BDIP + BVLC, and 
WD + WV, respectively. Besides, the proposed method out-
performs the method in [4] of average rate 94.0% with GBC 
and 93.0% with KNN, where 24 histogram features and 96 
GLCP Haralick features from 12 detail subbands at 4-level 
wavelet transform are extracted. 

Since element images of BR1 are obtained with severe 
overlapping, they reveal high similarity to each other, we can 
expect that the performances of all features for BR1 are very 
high compared with VS1 and BR2. Actually we get correct 
decision of 100 % by WD + WV as well as by WI + WD + 
WV in cases of selecting 40 training subimages randomly. In 
addition, WD + WV gives 100% and WI + WD + WV 
99.8% in case of selecting the upper 40 subimages for train-
ing. It can also be shown that our method excels the method 
in [5] of average rate 97.2%, where linear regression is per-
formed on pairs of subband energies by 3-level wavelet 
packet transform. It is also shown that the stabilization of 
distance measurement for covariance matrices yields the per-
formance gain of 0.1% ~ 0.4% for wavelet features. 

 
5. CONCLUSION 

A texture classification method has been proposed which 
uses the fusion of wavelet-domain BDIP and BVLC mo-
ments and wavelet energies. The fused features of test im-
ages were classified by the Gaussian Bayes classifier. It was 
shown in experiments for three test DBs that the good nor-
malization property of BDIP and BVLC effected excellent 
behaviors in the wavelet domain, too. As a result, our fused 
feature was shown to yield the decision rates of 97.4% for 
some Vistex images, 99.8% for some Brodatz images, and 
100% for other Brodatz images. 
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