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ABSTRACT 
Recently, Generalized Discrete Fourier Transform 
(GDFT) has been forwarded as the theoretical 
framework to design a variety of constant modulus 
orthogonal complex transforms with non-linear phase. 
In this paper, we evaluate the auto- and cross-correlation 
properties of several GDFT solutions and compare them 
with the popular code families like Gold, Walsh and 
DFT. It is shown that the GDFT brings significant 
correlation performance improvements over known code 
families. We predict that GDFT based OFDM and 
CDMA solutions will offer performance improvements 
in multicarrier communications systems of the future.  
 
Index Terms— Generalized Discrete Fourier Transform, 
Correlation Performance, OFDM, DMT, CDMA. 

 
 

I. INTRODUCTION 
 
Among various binary spreading families, Gold codes have 
been successfully used for asynchronous communications in 
DS/CDMA systems due to their lower cross-correlation 
features [1]. Walsh, Gold and several other real spreading 
code sets are designed to optimize even correlation functions 
[2-6]. However, the odd correlations are also important as 
much as even correlations. Therefore, Fukumasa, Kohno and 
Hideki proposed a new set of complex PN sequences, called 
Equal Odd and Even (EOE) sequences, with good odd and 
even correlations [7]. EOE sequences are generated by using 
one of the real code sets, e.g. Gold and Walsh.  
 
Spreading codes with non-binary real chip values were also 
proposed in the literature in order to improve their auto- and 
cross-correlations. More recently, research has refocused on 
constant amplitude spreading codes due to the efficiency 
concerns of non-linear RF power amplifiers employed in 
wireless transceivers. Hence, complex roots of unity were 
proposed as complex spreading codes by several authors in 
the literature. All codes of such a set are placed on the unit 
circle of the complex plane. Frank-Zadoff, Chu and 
Oppermann introduced a variety of complex spreading 
codes [8-11]. Moreover, Oppermann has shown that Frank-
Zadoff and Chu Sequences are the special cases of his 
family of spreading sequences. The dimension of an 
Oppermann set with the code length of N is determined by  

 
Euler’s totient function. For the case where N is a prime 
number, the size of the Opperrmann code set is equal to N-1. 
This is one of the basic limitations of Oppermann Codes 
[8,12]. 

 
More recently, Generalized Discrete Fourier Transform 
(GDFT) was introduced and it provides a theoretical 
framework where many popular constant modulus 
orthogonal function sets including DFT and others shown to 
be the special solutions [11]. In contrast to linear phase 
DFT, GDFT family explores the phase space in its entirety 
in order to improve correlation properties of constant power 
orthogonal spreading codes. We present GDFT and its 
correlation properties with respect to the well know 
correlation metrics along with popular families like Gold 
and Walsh in the following sections of the paper. 
 

II. GENERALIZED DFT 
 
An Nth root of unity is a complex number satisfying the 
equation [11] 
 

1 0,1,2,...Nz N= =                        (1) 
 
If z  holds Eq. (1) but 1 ; 0 1mz m N≠ < < − , then z  is 
defined as a primitive Nth root of unity. The complex number 

0
(2 / )j Nz e π=  is the primitive Nth root of unity with the 

smallest positive argument. The other primitive Nth roots of 
unity are expressed as  
 

(2 / ) 1,2,3,  ... , 1j N kz e k Nk
π= = −                                 (2) 

 
where k and N are co-prime. All primitive Nth roots of unity 
satisfy the unique summation property of a geometric series 
expressed as follows 
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Now, we define a periodic, with the period of N, constant 

modulus, complex discrete-time sequence ( )re n  as 
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 (2 / )( ) ( )   , 0,1,2,... ,  -  1  j N rnne n z e r n Nr r
π= =     (4) 

                 
This complex sequence over a finite discrete-time interval in 
a geometric series is expressed according to Eq. (3) as 
follows  
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This mathematical property is utilized with the factorization 
into two orthogonal exponential functions where one defines 

the discrete Fourier transform (DFT) set { ( )}
k

e n  satisfying 
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The notation (*) represents the complex conjugate function 
of a function. Note that 0 2 / Nω π=  is the nth root of 
unity on the unit circle and also called the fundamental 
frequency defined in the unit of radians per cycle. We are 
going to expand the linear phase functions of Eq. (6) in the 
definition of GDFT. 
 
Let’s generalize Eq. (5) by introducing a product function in 
the phase defined as  ( ) ( ) ( )k ln n nϕ ϕ ϕ= −  and expressing 
a constant amplitude orthogonal set as follows, 
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Hence, the basis functions of the new orthogonal set are 
defined as 
 

(2 / ) ( )
    ( )  & 0,1,... , -1j N n nk

k n k n Ne e π ϕ
=        (8) 

 
The new orthogonal function set in Eq. (8) is called the 
Generalized Discrete Fourier Transform (GDFT) [11]. It is 
noted that there are infinitely many function sets with 
constant power are available.  
 
As an example, one might define the discrete time rational 
function ( )k nϕ  in Eq. (8) as the ratio of two polynomials, 
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Let’s assume that the denominator polynomial ( )D n is 
equal to one and the order N numerator polynomial in n is 
defined as follows 
 

1 2 3
1 2 31

( ) ...j Nb bb b b
j N

N

jk n a n a n a n a na nϕ
=

= = + + + +∑
          (10) 
 
In general, , }{ j jba  coefficients are real numbers. Now, we 
will define several correlation metrics to compare various 
code sets. These correlation types are known to dictate the 
performance of a multicarrier communications system. 
 
 
III. CORRELATION METRICS 
 
Since there are infinitely many possible GDFT’s with 
nonlinear and linear phase in the solutions space, we define 
a few metrics to compare the performance of various code 
sets. These metrics basically depend on the auto- and cross-
correlation properties of the orthogonal sets. On the other 
hand, the multi-user interference and synchronization 
amiability of code sets are theoretically shown to depend on 
their auto- and cross-correlations properties. There are 
several different types of correlation functions defined in the 
literature to characterize code sets of different families. In 
this study, we mainly focus on the aperiodic correlation 
function (ACF). ACF for two complex sequences 
{ }( ), ( )k le n e n  of an N-dimensional set is defined as [4] 
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The following metrics employed in the brute force search 
process to design various GDFT examples presented in this 
paper. 
 
III.A Maximum Value of Auto- and Cross-Correlation 
Sequences: The maximum correlation value maxd of a set of 

sequences { }; , 0,1,2,..., 1( )k k n Ne n = −  is calculated as 

 

{ }max ,maxd d dam cm=                     (12) 

 
where amd  is the maximum value of N autocorrelation 
sequences for the entire set obtained from Eq. (11) when 
{ }( ) ( ) ; 0,1,2,..., 1k le n e n k N= = −  as given in the following 

equation, 
  

{ }max ( )
0
1

kamd d m
k M
m M

=
≤ <
≤ <

        (13) 

 
Similarly, cmd  is the maximum value of all possible cross-
correlation sequences in a code set also calculated from Eq. 
(8) and is expressed as 
 

{ },max ( )
0 ,
0

k lcmd d m
k l M k l
m M

=
≤ < ≠
≤ <

        (14) 

 
In Eq. (13) and Eq. (14), M  is the size of the code set and 
N  is the code length in the set. 
 
Sarwate showed the relationship between the maximum out-
of-phase auto-correlation amd  and the maximum cross-

correlation cmd  as follows [13], 
 

2 2( 1) 1
( 1)cm am
Nd d

N M
−

+ ≥
−

                    (15) 

 
leading to the Welch bound for complex spreading 
sequences expressed as [14], 
 

{ }max
1max ,
1am cm

Md d d
NM

−
= =

−
                   (16) 

 
In Table 1, we display the achievable Welch bounds for 
constant modulus complex spreading codes for various 
lengths.  
 
Table 1: Achievable Welch Bounds for Various Spreading Code 
Lengths. 

 (M=N) 
maxd  

8 0.333 
16 0.243 
32 0.174 
64 0.124 

 
III.B Mean Square Value of Auto- and Cross-
Correlation Sequences: The quantitative measures given 
above are important to highlight the worst case scenarios. In 
contrast, the average performance counts more in some 
applications. Therefore, we take into account the mean 
square value of cross-correlation sequences as another 
performance metric. Furthermore, the average of mean 
square auto-correlation sequences for each code in the set, 

ACR , and the average of mean square cross-correlation 

sequences for all code pairs in the set, CCR , are introduced 
as follows [4],   
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III.C The Merit Factor (Fk): Code synchronization is 
crucial for the performance of CDMA systems and it is 
strongly related to the auto-correlation properties of codes. 
In order to incorporate this requirement in code evaluation 
another metric called the merit factor (Fk) was introduced in 
[6]. The merit factor for the kth code is the ratio of the energy 
in the main lobe of the autocorrelation function over the 
energy in the side lobes and it is mathematically expressed 
as  
 

(0)
1 2

2 ( )
1

dkFk N
d mkm

=
−
∑
=

                     (19) 

 
In CDMA communications systems, merit factor is desired 
to be as large as possible in order to improve the code 
synchronization and amiability. Next, we are going to search 
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for solutions of a G  matrix type with brute force search 
technique with respect to the correlation performance 

metrics defined above in order to be able to design GDFTA  
matrices defined in Eq. (22) below. 
 
IV. GDFT DESIGN WITH DIAGONAL G  MATRIX 
 
In this design example we used a non-constant ( )k nϕ  
function of Eq. (10) in the phase for each function of the set 
expressed as 
 

1 2( ) 1 2

1
01 2( ) 2

b b
n a n a nk

a k

b b
n k a nk

ϕ
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= +

=

=

= +
        (20)

          
Therefore, the basis functions of the set are defined 
according to Eq. (8) as 
 

 

12(2 / ) ( ) (2 / )( )(2 / )( ) 2( )

, 0,1,..., - 1  

b
j N n n j N a nj N knke n e e ek

k n N

π ϕ ππ
+
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Note that the first exponential term of the last equation is 
merely the DFT kernel with linear phase while the second 
exponential term defines the G  matrix and { ( )}e nk  are 

the row sequences of GDFTA  matrix that is defined as 
follows 
 

GDFT DFT
A A G=          (22) 

 
In this form, by changing the values of real 2a  and 2b  
coefficients, one might obtain many different transform sets 
with desirable auto- and cross-correlation properties and 
nonlinear phase functions. 
 
In the previous section, we defined several metrics for the 
evaluation of various spreading code sets. Now, we display 
the values of these metrics for optimal GDFTA  matrices 
obtained in the solutions space utilizing a brute-force search 
where the search resolution is defined by the binary valued 

2a  and 2b  coefficients with the corresponding number of 
bits per coefficient as defined above. Table 2 tabulates the 
optimal values of the metric maxd  along with other 
performance metrics for various search resolutions defined as 

2 2, 5 / 2b
a bΔ =  where b is the search resolution bits per 

coefficient and 0 , 52 2a b< ≤  for the code length of 8N = . 
 
Table 2: Values of Various Metrics when Optimal Design is Based 
on the Performance Metric maxd for the Code Length of 8N = . 

 
 
Similarly, Table 3 displays the correlation metrics for 
various known codes along with the optimal GDFTA  matrix 
obtained through a search based on the design metric maxd  
for the code length of N=8. 
 
Table 3: Correlation Performance Metrics for Various Popular 
Spreading Code Families with the Code length of N=8. 

Code amd
 

cmd
 

maxd
 

ACR
 

CCR
 

F 

Walsh [8x8] 0.88 0.88 0.88 2.38 0.66 0.42 

Walsh-like 
[8x8], [3] 0.63 0.63 0.63 0.88 0.88 1.14 

DFT [8x8] 0.88 0.33 0.88 4.38 0.38 0.22 

7/8 Gold 0.71 0.71 0.71 0.86 0.88 1.17 

Oppermann Set, 
[8,12] 
(opt maxd ) 
(m=1, p=1, 
n=2.98, N=7) 

0.47 0.42 0.47 1.28 0.59 0.78 

AGDFT [8x8] 
(opt maxd ) 

0.38 0.39 0.39 1.1 0.84 0.91 

 
In Figures 1.a and 1.b, we display the inter-dependences of 
the auto- and cross-correlation metrics ACR and CCR , 

respectively, on both of the design parameters 2a  and 2b . 
For a multi-carrier communications application, depending 
on the system either OFDM based or CDMA based, one can 
choose optimum values of  2a  and 2b  for the desired values 

of auto- and cross-correlation metrics, ACR  and CCR . In 
OFDM systems, frequency localization is more important 
and the optimization is performed on CCR  parameters 

whereas in a DS-CDMA system, ACR and CCR  both are 

b  
(bits/c
) 

dam  dcm  maxd
 
(OPT) 

RAC  RCC  F  

4 0.301 0.442 0.442 0.526 0.925 1.900 

6 0.376 0.409 0.409 0.854 0.878 1.171 

8 0.341 0.388 0.388 0.576 0.918 1.738 

9 0.377 0.388 0.388 1.096 0.844 0.913 
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equally important. The low values of ACR  is desired for 
synchronization purposes of the system. Similarly, the low 
values of CCR are required to minimize multi-user 
interference (MUI) that dictates the system performance.  
 

4. CONCLUSIONS 
 

Multi-carrier interference and synchronization amiability of 
orthogonal sets in an OFDM or CDMA based 
communications system are theoretically shown to depend 
on their auto- and cross-correlations properties. GDFT with 
nonlinear phase offers a unified framework to design 
constant modulus orthogonal sets. We propose in this paper 
a correlation-based optimal orthogonal set design method 
providing performance improvements over the known 
families. It is expected that GDFT based orthogonal 
multiplexers with improved performance and design 
flexibilities will allow us to build better OFDM and CDMA 
based multicarrier communications systems in the future. 
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Figure 1.a: Variation of the auto-correlation metric ACR  as a 
function of the design parameters 2a  and 2b . 
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