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ABSTRACT In hyperspectral imagery, it is often interesting to de-

This paper deals with-mode subspaces in tensor based determine the different materials of a sceriee( endmem-
pap P bers). Therefore, several works are focused on the es-

noising. Actually, the main issue of tensor signal procegsi timation of the number of endmembers. In the state of

is the estimation of-mode ranks since a subspace based agy o art, Neyman-Pearson detection theory-based threshold

proach is considered. In hyperspectral images, an ef“ficiei g method [7], namely HFC and NWHFC enable to estimate
denoising method could allow more accurate results fo cla he virtual dimensionality of a hyperspectral image. An hy-
sification or unmixing. In this paper, we propose to exten

. e erspectral signal subspace identification by minimumrerro
subspace denticaon methods o tenscronode rank L (JYSMe) has aso been mvoduced i 8] 1 fenor ot
imaces isé Livalent to estimate the 3-mode ran)k/%f aFt)ens ons, this is equivalent to estimate the 3-mode rank. Is thi
HyS%me an(?Neyman-Pearson detection theory-based thre%ig‘tzlper we extend these criterion to determine everyode
olding method (HFC) are practical benchmarks. Therefore nk of the data set. We also propose a comparison in terms

we adopt tensor formalism to extend reference algorithms t8f denoising, depending on the chose criterion.
P 9 The paper is organized as follows: section 2 intro-

determinen-mode ranks of tensors. We compare dncferentduces the tensor model for hyperspectral images. Section 3

adapted criteria both on simulated and real data. presents some methods to reduce noise in hyperspectral im-
ages. In Section 4, we propose several methods to determine
1. INTRODUCTION n-mode ranks of tensors. A comparison between these meth-

. . N L ods is drawn in section 5. Last section concludes the paper.
Image restoration aims at estimating the original imagmfro

a noisy observation. There are many application fields for
image restoration [1]. It has also been a topic of huge inter- 2. SOMEMULTILINEAR ALGEBRA TOOLS
est during the past few decades. As one increasingly has 01 Multiplication of a tensor by a matrix

work with multidimensional datag.g medical or hyperspec- . .
tral images, restoration filtering methods have to be matiifie!n this paper we are concerned with TUCKER3 decompo-

accordingly. In this paper, we consider color or hyperspecSition, that is, &N order tensor# can be decomposed as
tral images as multidimensional arrays [2, 3], where theze a Several products between a core tergand a set of matri-
two indexes for spatial localization and one index for spact cesUM n=1,...,N:
channel which can consist of about 200 bands.

Usually, noise removal techniques are based on the pro- o =% ><1U(l> X2...XN U(N), Q)
cessing of each band separately. But this may lead to loss
of information since correlation between bands are not conwhere x,, denotes thex-mode product operator [9], whose
sidered. Hybrid filters have then be introduced [4]. Mini- entries are :
mum noise fraction have also been proposed in the case of re-

motely sensed images [5], choosing a transformation of data @ UM e
that maximizes the signal to noise ratio (SNR) instead of the ( Xn )il,_,infljnmﬂ,_,m - Z Gigiz...in—1inins1...in Yjnin-
variance. But the information used is only spectral, and it in=1 )

does not consider spatial information.

Recent works [2] have proposed a tensor approach t9, Flattening matrices of a tensor
noise removal in multidimensional data sets. This permits”
to both consider spatial and spectral information with a subln tensor processing, flattening is a common tool. It permits
space based approach. to reshape the tensor into a matrix, leading to N flattened

Therefore, an important issue in tensor filtering is the esmatrices. Each flattening matrix is obtained choosing a spe-
timation of n-mode ranks, which correspondniemode sig- ~ Cific direction of the multiarray. This correponds so slibe t
nal subspace dimensions. For such purpose, an extensiont&sor and stack each piece in a specific order. fFivode
tensor of information criteria were proposed in [2, 6]. Butflattening matrixA, of a tensor’ € R't* !N is defined as
this extension does not take care of hyperspectral imagedmatrix [9] fromR'"M where :
specificities. Indeed, spectral bands are highly corrdlate
since they correspond to the same observed scene. Mh=1l1...ln-alpya- - IN 3)
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3. NOISE REDUCTION IN HYPERSPECTRAL 4. ESTIMATION OF N-MODE RANKS

IMAGES . . : .
n-mode signal subspace is an important issue. A common
3.1 Problem formulation assumption is that signal and noise subspaces are orthogo-

o ) ) nal. The dimensions of the-mode signal subspaces need
A multidimensional data tensa# can be decomposed into g pe estimated, since they are not known in practice. In hy-

an impaired signal”’ by an additive noise#: perspectral images, the estimation of 3-mode signal selespa
has been widely studied since it corresponds to the esbmati
R=S~4+N (4)  ofthe endmember number in the image. It is often called vir-

tual dimensionality (VD) [7]. But for tensor denoising meth
Assuming that? and.# areNt" order tensors of sizg x  0ds, eactm-mode rank has to be estimated.

... X In, the multidimensional filtering of the data s#tis :
4.1 Information Criteria

S =R x1HY x5... xnHN, (5) In[2, 6], an extension of Akaike criterion (AIC) or minimum
description length (MDL) [11, 12] is used to obtairmode
where matrixH(" is referred to as-mode filter. ranks :
_ o o (B("))ﬁ (In—kn)Mn

3.2 Noise Estimation AIC(k)) = —2Iog< lekn;n i - )
In hyperspectral images, high correlations are presengalo fn=kn &j=kn+171
the third mode since the same scene has been shot at several +2kn(2ln — kn) (8)
wavelengths. In [8], a method based on these correlations
is proposed. Therefore, flattening the data ter¥goin its Whereﬁi(m, i =1 tol, are the, singular values of the covari-

third mode leads to matriR3 of sizelz x M3. That is, each . T . .
column represents a spectrum. We assume that each bandB-e Matrx m”_R”] ((r)];c then-modg)flattemng matriR, of

the image i(e. each line ofR3) can be written as a linear data tensoe?, with B, > ... > B 7. Mp is the number of
combination of thds — 1 others. Denotin@®g;; the matrix ~ columns ofRy (3). The estimates-mode rankKy is the

R but theith band, we can write : value ofk, which minimizes AIC criterion.

ri = Rg)ifi + & (6) gyt )
N1 (B “”)

|
S

MDL(kn) = —log <

B is the regression vector which least square estimate is
R -1
given by = (R3/iR§/i) Rg/iri. Then, the noise can be +%kn(2ln— kn)log(Mn) 9)

expressed as¢i = ri — Rajif3. 4.2 Neyman-Pear son detectors
- . : — Some methods based on Neyman-Pearson theory are pre-
3.3 Multidimensional Wiener Filtering sented in [7] to estimate the number of endmembers in hy-

Tensorial approaches have been shown to overcome tradierspectral images. HFC, NWHFC and NSP are Neyman-
tional channel-by-channel filtering [10, 2]. Some methodd €arson detectors and are commonly used in hyperspectral
are based on the approximation of tensors, such as HOSVBignal subspace identification. They are shown to overcome
(K1,Kz,K3) or LRTA-(K1, Ko, K3). Although they aim at es- information criteria AIC and MDL [7]. In our experiments,
timating the signal from the observation data &tthe cri- ~ We propose to estimatemode signal subspaces of both sim-

teri inimized is th d _ 7| 'which Uulated and real hyperspectral data The main overcoming of
ig?]%?cr:yt?rl;n;e 's the mean squared erfaf — 7/ whic this method is the false alarm probabil®y that has to be

A method consists in extending Wiener filter to multidi- fixed arbitrarily.

g}\?:r?g}r/lgl data [10]. In that case, the mean squared eITor jSa £y tended HySime
~2 In [8] propose another method called HySime to estimate
MSE=E {Hy—yﬂ } (7)  the number of endmembers in hyperspectral data the
3-mode rank). This method can be extendedttoode ranks
The minimization of (7) leads to the expression of tihe of tensors. HySime propose to minimi;e the mean squared
mode filters ‘HM — Vé”)/\m)V(”)T, whereV™ are the left  €TOr between the 3-mode signal flattening mafpand the

singular vectors oh-mode cov;riance matri; ansm and Projection on the signal subspace of the 3-mode data flatten-

. (N (N
A is a diagonal weight matrix containing a combination!ng matrix -U1(< )UI(<) Ra.

of the eigenvalues of noise, signal and datmode covari- Let us denote the projector on timemode signal sub-
ance matrices. Thesemode filters are obtained through an SPace as : :
iterative alternating least squares algorithm. Pﬁ:) _ U|(<:>U|(<:> (10)

Note that the multidimensional Wiener filter needsithe ) ) )
mode ranks to determine the eigenvalues corresponding where subscripk, stands for thek, first eigenvectors kept
signal or noise. from UM,
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Figure 1: Spectra of five materials of the USGS digital spec
tral library.
Figure 2: Synthetic images generated from the spectra given

in Fig. 1.
We can extend HySime method in each mode, minimiz-
ing : NR AIC MDL HFC | NWHFC | HySime
mselkn) = E|[|Sn — Pi¢ Rl | (1)) [400B[R23[222)[ (24 (3.24) | (424
30dB | (2,23)] (2.22)| B3.2.8) | (3.24) | (424
It can be shown, following [8], that it is equivalent to find al | 200dB | (2,2,3)| (2,2,2)| (3,2,3)| (3,2,3) | (4.2,4)

the negative component of the vector defined by:

K Table 1:n-mode rank estimation using several methods. For
5= Z—uf.n)iRnRIui(.n)+2ui(-n)iNnNIui(-n) (12) methods HFC and NWHFC, we use the paramé&gr=
= Mn i I Mgy i 103,

withi=1,... 1. ) _ . . o
rank which corresponds to virtual dimensionality in other
5. EXPERIMENTAL RESULTS studies. i .
Including then-mode ranks estimation of table 1 in tensor
In this section, we propose to compare the interest of abouétering, we show that the use of HySime leads to a signifi-
methods to determinemode ranks. Thesemode ranks are cantimprovement of the reconstruction (see table 2).
involved in multidimensional Wiener filtering. We show that

the extention of HySime algorithm formode ranks estima- SNR 20db | 30dB | 40dB

tion leads to improve tensor filtering. QC (AIC) 30dB| 30dB| 30dB

_In the following experiments, the signal-to-noise ratio is QC (MDL) 30dB | 30dB | 30dB

defined as: I QC (HFC) [ 37dB| 37dB| 37dB

_ | QC (NWHFC) [ 37dB | 37dB | 37dB

SNR=10-log, 7 2- (13) OC (HySime) | 50dB | 61dB | 71dB

Before presenting some results, we introduce a qualitg-crit
rion to quantifya posteriori the quality of the estimation : Table 2: Denoising results with multidimensional Wiener fil
ter given the criterion used for temode ranks estimation.
2
QC(.) = 10-log (%) Y
|7 =~ 5.2 Real data

The following data have been obtained by HYDICE. HY-
DICE is an airborne sensor which collects post-processed
We generated a hyperspectral image from the USGS digitalata in 210 wavelengths: 0.4 - 2.8n.
spectral library [13]. We selected 4 spectra from the databa  Considering the scene depicted in Fig. 3, we propose to
(fig 1) and generated a background with the first spectrurastimate it;-mode ranks.
and 3 targets with the others (fig 2). First, we add a Gaussian noise to obtain varying SNR.
We add a Gaussian white noise to this synthetic imageiNe show that HySime fails to estimate 1-mode and 2-mode
Table 1 gives the estimation ofmode ranks for several val- ranks but is good for 3-mode rank detection. Actually, the
ues of SNR. This table emphasizes that HFC, NWHFC andhodel used to identify subspaces in HySime does not fit with
HySime outperforms the information criteria AIC and MDL 1-mode and 2-mode flattened data since the spatial bands
since they take into account specificities of hyperspettral cannot be written as a linear combination of others. But for
agery. Notice that the improvement concerns the 3-modthe 3-mode rank determination, the model fits. The results

5.1 Resultson smulated data
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SNR 15dB 20dB 25dB 30dB 350dB
AlC Estimated ranks (46,36,10)| (66,65,12| (98,94,18)| (121,121,33)| (126,128,63)
QC 235dB | 26dB 29dB 32dB 36dB
HySime | EStmated ranks (19.19.6) | (37.33,8)[ (60,57.11)| (88,84,13) | (112,108,15)
QC 22dB 25 dB 28 dB 32dB 350dB
AIC+HySime | Estimated ranks (41,36,6) | (66,65,8) | (98,94,11)| (121,121,13)| (126,128,15)
QC 2508 | 28508 | 32dB 35dB 37dB

Table 3: Influence ofi-mode ranks estimation on multidimensional Wiener filtgriResults were obtained on real data.

[3] Qiang Zhang, Han Wang, Robert Plemmons, and
V. Paul Pauca. Spectral unmixing using nonnegative
tensor factorization. IRACM-SE 45: Proceedings of
the 45th annual southeast regional conference, pages
531-532, New York, NY, USA, 2007. ACM Press.

[4] R. Lukac and K. PlataniotisColor Image Processing
- Methods and Applications. CRC press (Taylor and
Francis group), Boca Raton, FL., 2006.

[5] A.A. Green, M. Berman, and M.D. Craig. A transfor-
mation for ordering multispectral data in terms of im-
age quality with implications for noise removaEEE-
TGARS, 26(1):65—74, 1988.

Figure 3: HYDICE image. [6] N. Renard and S. Bourennane. Improvement of target
detection methods by multiway filterinb=EE-TGARS,
46(8):2407-2417,2008.

obtained are in agreement with the study [6, 2] which have 7] C. Chang and Q. Du. Estimation of number of
shown that the spatial ranks have to contain most of informa-" * gpectrally distinct signal sources in hyperspectral im-
tion. Therefore, either 1-mode and 2-mode ranks have large  agery. |EEE Trans. Geoscience and Remote Sensing,
values [6] or a rearrangement of data have to be done to re- - 43(3):608-619, 2004.

duce these ranks [2]. In this paper we keep large values give
by AIC or MDL criterion for the spatial mode ranks.

r[8] J.M. Bioucas—Dias apd J.M.P. Nascimento. Hyperspec-
In table 3 we don't give the results obtained with tral subspace identificatiohEEE-TGARS, 46(8):2435—

HFC/NWHFC since it requires a threshold that has to be 2445, 2008.
arbitrarily fixed. However, we give the estimateemode  [9] L. De Lathauwer, B. De Moor, and J. Vandewalle. A

ranks and the quality of the restoration (after multidimen- ~ multilinear singular value decompositiold AM Jour.
sional Wiener filtering). The table illustrate that the camb on Matrix An. and Applic., 21:1253-78, 2000.
nation of extended HySime (for spectral rank) and extendefll0] D. Muti and S. Bourennane. Multidimensional filtering
AIC (for spatial ranks) permits to get a better reconstarcti based on a tensor approacignal Processing, Else-
of the signal tensor. vier, 85:2338-2353, 2005.
11] H. Akaike. A new look at the statistical model identi-
6. CONCLUSION - fication. |[EEE Trans. on automatic control, 19(6):716—

In this paper, we have proposed to extend virtual dimension 723, 1974.

to determiner-mode ranks. Starting from hyperspectral datg]12] M. Wax and T. Kailath. Detection of signals by infor-
specificities, that is, the high correlation in 3-mode, wedalle mation theoretic criterialEEE Trans. on ASSP, ASSP-
oped HySime expression in tensor notation. We have shown  33(2):387-392, 1985.

on simulated results that the extension of HySime to ten13) Roger N. Clark and Geological Survey (U.SThe U.S
sors permits to determine efficiently the 3-mode rank. How- ~* Geg|ogical Survey, digital spectral library [microformy
ever, the spatial ranks (1-mode and 2-mode) are notverywell  / poger N. Clark ... [et al.]. U.S. Geological Survey
found. Actually, the property of high correlation is noteru - [Books and Open-File Reports Section, distributor],

in spatial modes. Therefore, we have proposed to use the [Denver, COJ ;, version 1:0.2 to 3.0 um. edition, 1993.
extended information criterion AIC for 1-mode and 2-mode ’ ’ '

ranks and HySime for 3-mode rank.
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