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Dom. Univ. de Saint Jérôme, 13397 Marseille Cedex, France
phone: + (33) 491 288 202, fax: + (33) 491 288 067, email: damien.letexier@fresnel.fr

web: www.fresnel.fr

ABSTRACT

This paper deals withn-mode subspaces in tensor based de-
noising. Actually, the main issue of tensor signal processing
is the estimation ofn-mode ranks since a subspace based ap-
proach is considered. In hyperspectral images, an efficient
denoising method could allow more accurate results for clas-
sification or unmixing. In this paper, we propose to extend
subspace identification methods to tensors forn-mode rank
estimation. The estimation of endmembers in hyperspectral
images is equivalent to estimate the 3-mode rank of a tensor.
HySime and Neyman-Pearson detection theory-based thresh-
olding method (HFC) are practical benchmarks. Therefore,
we adopt tensor formalism to extend reference algorithms to
determinen-mode ranks of tensors. We compare different
adapted criteria both on simulated and real data.

1. INTRODUCTION

Image restoration aims at estimating the original image from
a noisy observation. There are many application fields for
image restoration [1]. It has also been a topic of huge inter-
est during the past few decades. As one increasingly has to
work with multidimensional data,e.g medical or hyperspec-
tral images, restoration filtering methods have to be modified
accordingly. In this paper, we consider color or hyperspec-
tral images as multidimensional arrays [2, 3], where there are
two indexes for spatial localization and one index for spectral
channel which can consist of about 200 bands.

Usually, noise removal techniques are based on the pro-
cessing of each band separately. But this may lead to loss
of information since correlation between bands are not con-
sidered. Hybrid filters have then be introduced [4]. Mini-
mum noise fraction have also been proposed in the case of re-
motely sensed images [5], choosing a transformation of data
that maximizes the signal to noise ratio (SNR) instead of the
variance. But the information used is only spectral, and it
does not consider spatial information.

Recent works [2] have proposed a tensor approach to
noise removal in multidimensional data sets. This permits
to both consider spatial and spectral information with a sub-
space based approach.

Therefore, an important issue in tensor filtering is the es-
timation ofn-mode ranks, which correspond ton-mode sig-
nal subspace dimensions. For such purpose, an extension to
tensor of information criteria were proposed in [2, 6]. But
this extension does not take care of hyperspectral imagery
specificities. Indeed, spectral bands are highly correlated
since they correspond to the same observed scene.

In hyperspectral imagery, it is often interesting to de-
termine the different materials of a scene (i.e. endmem-
bers). Therefore, several works are focused on the es-
timation of the number of endmembers. In the state of
the art, Neyman-Pearson detection theory-based threshold-
ing method [7], namely HFC and NWHFC enable to estimate
the virtual dimensionality of a hyperspectral image. An hy-
perspectral signal subspace identification by minimum error
(HySime) has also been introduced in [8]. In tensor nota-
tions, this is equivalent to estimate the 3-mode rank. In this
paper we extend these criterion to determine everyn-mode
rank of the data set. We also propose a comparison in terms
of denoising, depending on the chose criterion.

The paper is organized as follows: section 2 intro-
duces the tensor model for hyperspectral images. Section 3
presents some methods to reduce noise in hyperspectral im-
ages. In Section 4, we propose several methods to determine
n-mode ranks of tensors. A comparison between these meth-
ods is drawn in section 5. Last section concludes the paper.

2. SOME MULTILINEAR ALGEBRA TOOLS

2.1 Multiplication of a tensor by a matrix

In this paper we are concerned with TUCKER3 decompo-
sition, that is, aNth order tensorA can be decomposed as
several products between a core tensorG and a set of matri-
cesU(n),n = 1, . . . ,N :

A = G ×1U
(1)×2 . . .×N U

(N), (1)

where×n denotes then-mode product operator [9], whose
entries are :

(

G ×n U
(n)
)

i1...in−1 jnin+1...iN
=

In

∑
in=1

gi1i2...in−1inin+1...iN u jnin .

(2)

2.2 Flattening matrices of a tensor

In tensor processing, flattening is a common tool. It permits
to reshape the tensor into a matrix, leading to N flattened
matrices. Each flattening matrix is obtained choosing a spe-
cific direction of the multiarray. This correponds so slice the
tensor and stack each piece in a specific order. Then-mode
flattening matrixAn of a tensorA ∈ R

I1×...×IN is defined as
a matrix [9] fromR

In×Mn where :

Mn = I1 . . . In−1In+1 . . . IN . (3)
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3. NOISE REDUCTION IN HYPERSPECTRAL
IMAGES

3.1 Problem formulation

A multidimensional data tensorR can be decomposed into
an impaired signalS by an additive noiseN :

R = S +N (4)

Assuming thatS andN areNth order tensors of sizeI1×
. . .× IN, the multidimensional filtering of the data setR is :

Ŝ = R×1H
(1)×2 . . .×N H

(N), (5)

where matrixH(n) is referred to asn-mode filter.

3.2 Noise Estimation

In hyperspectral images, high correlations are present along
the third mode since the same scene has been shot at several
wavelengths. In [8], a method based on these correlations
is proposed. Therefore, flattening the data tensorR in its
third mode leads to matrixR3 of sizeI3×M3. That is, each
column represents a spectrum. We assume that each band of
the image (i.e. each line ofR3) can be written as a linear
combination of theI3−1 others. DenotingR3/i the matrix
R3 but theith band, we can write :

ri = R3/iβi + ξi (6)

βi is the regression vector which least square estimate is

given byβ̂i =
(

R3/iR
T
3/i

)−1
R3/iri. Then, the noise can be

expressed as :̂ξi = ri −R3/iβ̂i.

3.3 Multidimensional Wiener Filtering

Tensorial approaches have been shown to overcome tradi-
tional channel-by-channel filtering [10, 2]. Some methods
are based on the approximation of tensors, such as HOSVD-
(K1,K2,K3) or LRTA-(K1,K2,K3). Although they aim at es-
timating the signal from the observation data setR, the cri-
terion minimized is the mean squared error‖R− Ŝ ‖ which
is not optimal.

A method consists in extending Wiener filter to multidi-
mensional data [10]. In that case, the mean squared error is
given by :

MSE= E
[

∥

∥S − Ŝ
∥

∥

2
]

(7)

The minimization of (7) leads to the expression of then-

mode filters :H(n) = V
(n)
s Λ(n)

V
(n)T

s , whereV(n)
s are the left

singular vectors ofn-mode covariance matrix E
[

SnS
T
n

]

and
Λ(n) is a diagonal weight matrix containing a combination
of the eigenvalues of noise, signal and datan-mode covari-
ance matrices. Thesen-mode filters are obtained through an
iterative alternating least squares algorithm.

Note that the multidimensional Wiener filter needs then-
mode ranks to determine the eigenvalues corresponding to
signal or noise.

4. ESTIMATION OF N-MODE RANKS

n-mode signal subspace is an important issue. A common
assumption is that signal and noise subspaces are orthogo-
nal. The dimensions of then-mode signal subspaces need
to be estimated, since they are not known in practice. In hy-
perspectral images, the estimation of 3-mode signal subspace
has been widely studied since it corresponds to the estimation
of the endmember number in the image. It is often called vir-
tual dimensionality (VD) [7]. But for tensor denoising meth-
ods, eachn-mode rank has to be estimated.

4.1 Information Criteria

In [2, 6], an extension of Akaike criterion (AIC) or minimum
description length (MDL) [11, 12] is used to obtainn-mode
ranks :

AIC(kn) = −2log

(

∏In
j=kn+1(β

(n)
i )

1
In−kn

1
In−kn ∑In

j=kn+1β (n)
i

)(In−kn)Mn

+2kn(2In − kn) (8)

whereβ (n)
i , i = 1 to In are theIn singular values of the covari-

ance matrix E[RnR
T
n ] of then-mode flattening matrixRn of

data tensorR, with β (n)
1 ≥ . . . ≥ β (n)

In
. Mn is the number of

columns ofRn (3). The estimatedn-mode rankKn is the
value ofkn which minimizes AIC criterion.

MDL(kn) = −log

(

∏In
j=kn+1(β

(n)
i )

1
In−kn

1
In−kn ∑In

j=kn+1β (n)
i

)(In−kn)Mn

+ 1
2kn(2In − kn)log(Mn) (9)

4.2 Neyman-Pearson detectors

Some methods based on Neyman-Pearson theory are pre-
sented in [7] to estimate the number of endmembers in hy-
perspectral images. HFC, NWHFC and NSP are Neyman-
Pearson detectors and are commonly used in hyperspectral
signal subspace identification. They are shown to overcome
information criteria AIC and MDL [7]. In our experiments,
we propose to estimaten-mode signal subspaces of both sim-
ulated and real hyperspectral data The main overcoming of
this method is the false alarm probabilityPf that has to be
fixed arbitrarily.

4.3 Extended HySime

In [8] propose another method called HySime to estimate
the number of endmembers in hyperspectral data (i.e. the
3-mode rank). This method can be extended ton-mode ranks
of tensors. HySime propose to minimize the mean squared
error between the 3-mode signal flattening matrixS3 and the
projection on the signal subspace of the 3-mode data flatten-

ing matrix :U(n)
k U

(n)T

k R3.
Let us denote the projector on then-mode signal sub-

space as :

P
(n)
kn

= U
(n)
kn

U
(n)T

kn
(10)

where subscriptkn stands for thekn first eigenvectors kept
from U

(n).
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Figure 1: Spectra of five materials of the USGS digital spec-
tral library.

We can extend HySime method in each mode, minimiz-
ing :

mse(kn) = E
[

‖Sn −P
(n)
kn

Rn‖
2
]

(11)

It can be shown, following [8], that it is equivalent to find all
the negative component of the vector defined by:

δi =
kn

∑
j=1

−u
(n)
i j

1
Mn

RnR
T
n u

(n)
i j

+2u(n)
i j

1
Mn

NnN
T
n u

(n)
i j

(12)

with i = 1, . . . , In.

5. EXPERIMENTAL RESULTS

In this section, we propose to compare the interest of above
methods to determinen-mode ranks. Thesen-mode ranks are
involved in multidimensional Wiener filtering. We show that
the extention of HySime algorithm forn-mode ranks estima-
tion leads to improve tensor filtering.

In the following experiments, the signal-to-noise ratio is
defined as:

SNR = 10· log
‖S ‖2

‖N ‖2 . (13)

Before presenting some results, we introduce a quality crite-
rion to quantifya posteriori the quality of the estimation :

QC(Ŝ ) = 10· log

(

‖S ‖2

∥

∥Ŝ −S
∥

∥

2

)

. (14)

5.1 Results on simulated data

We generated a hyperspectral image from the USGS digital
spectral library [13]. We selected 4 spectra from the database
(fig 1) and generated a background with the first spectrum
and 3 targets with the others (fig 2).

We add a Gaussian white noise to this synthetic image.
Table 1 gives the estimation ofn-mode ranks for several val-
ues of SNR. This table emphasizes that HFC, NWHFC and
HySime outperforms the information criteria AIC and MDL
since they take into account specificities of hyperspectralim-
agery. Notice that the improvement concerns the 3-mode
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Figure 2: Synthetic images generated from the spectra given
in Fig. 1.

SNR AIC MDL HFC NWHFC HySime
40 dB (2,2,3) (2,2,2) (3,2,4) (3,2,4) (4,2,4)
30 dB (2,2,3) (2,2,2) (3,2,4) (3,2,4) (4,2,4)
20 dB (2,2,3) (2,2,2) (3,2,3) (3,2,3) (4,2,4)

Table 1:n-mode rank estimation using several methods. For
methods HFC and NWHFC, we use the parameterPf a =

10−3.

rank which corresponds to virtual dimensionality in other
studies.

Including then-mode ranks estimation of table 1 in tensor
filtering, we show that the use of HySime leads to a signifi-
cant improvement of the reconstruction (see table 2).

SNR 20 db 30 dB 40 dB
QC (AIC) 30 dB 30 dB 30 dB
QC (MDL) 30 dB 30 dB 30 dB
QC (HFC) 37 dB 37 dB 37 dB

QC (NWHFC) 37 dB 37 dB 37 dB
QC (HySime) 50 dB 61 dB 71 dB

Table 2: Denoising results with multidimensional Wiener fil-
ter given the criterion used for then-mode ranks estimation.

5.2 Real data

The following data have been obtained by HYDICE. HY-
DICE is an airborne sensor which collects post-processed
data in 210 wavelengths: 0.4 - 2.5µm.

Considering the scene depicted in Fig. 3, we propose to
estimate itsn-mode ranks.

First, we add a Gaussian noise to obtain varying SNR.
We show that HySime fails to estimate 1-mode and 2-mode
ranks but is good for 3-mode rank detection. Actually, the
model used to identify subspaces in HySime does not fit with
1-mode and 2-mode flattened data since the spatial bands
cannot be written as a linear combination of others. But for
the 3-mode rank determination, the model fits. The results
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SNR 15 dB 20 dB 25 dB 30 dB 35 dB

AIC Estimated ranks (46,36,10) (66,65,12 (98,94,18) (121,121,33) (126,128,63)
QC 23.5 dB 26 dB 29 dB 32 dB 36 dB

HySime Estimated ranks (19,19,6) (37,33,8) (60,57,11) (88,84,13) (112,108,15)
QC 22 dB 25 dB 28 dB 32 dB 35 dB

AIC+HySime Estimated ranks (41,36,6) (66,65,8) (98,94,11) (121,121,13) (126,128,15)
QC 25 dB 28.5 dB 32 dB 35 dB 37 dB

Table 3: Influence ofn-mode ranks estimation on multidimensional Wiener filtering. Results were obtained on real data.

Figure 3: HYDICE image.

obtained are in agreement with the study [6, 2] which have
shown that the spatial ranks have to contain most of informa-
tion. Therefore, either 1-mode and 2-mode ranks have large
values [6] or a rearrangement of data have to be done to re-
duce these ranks [2]. In this paper we keep large values given
by AIC or MDL criterion for the spatial mode ranks.

In table 3 we don’t give the results obtained with
HFC/NWHFC since it requires a threshold that has to be
arbitrarily fixed. However, we give the estimatedn-mode
ranks and the quality of the restoration (after multidimen-
sional Wiener filtering). The table illustrate that the combi-
nation of extended HySime (for spectral rank) and extended
AIC (for spatial ranks) permits to get a better reconstruction
of the signal tensor.

6. CONCLUSION

In this paper, we have proposed to extend virtual dimension
to determinen-mode ranks. Starting from hyperspectral data
specificities, that is, the high correlation in 3-mode, we devel-
oped HySime expression in tensor notation. We have shown
on simulated results that the extension of HySime to ten-
sors permits to determine efficiently the 3-mode rank. How-
ever, the spatial ranks (1-mode and 2-mode) are not very well
found. Actually, the property of high correlation is not true
in spatial modes. Therefore, we have proposed to use the
extended information criterion AIC for 1-mode and 2-mode
ranks and HySime for 3-mode rank.
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