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ABSTRACT 

The gyrator transform was introduced in recent years and 
useful for image processing. As the fractional Fourier trans-
form, the gyrator transform can also be viewed as an exten-
sion of the Fourier analysis. In this paper, we discuss the 
digital implementation algorithms of the gyrator transform. 
We also discuss the eigenfunctions and the self-imaging 
phenomena of the gyrator transform. Many properties, such 
as the differential and dilation preservation properties, are 
also discussed. We also discuss the possible applications of 
the gyrator transform in filter design and signal sampling. 

 

1. INTRUDUCTION 

The gyrator transform [1][2][3] is a new operation intro-
duced by Rodrigo, Alieva, and Calvo in 2007. It is defined 
as:  
  ( ) ( ), ,gyG u v O g x yα

α = =⎡ ⎤⎣ ⎦    

 ( )( )cos ( )| csc | exp ,
2 sin

uv xy uy vxj g x y dxdyαα
π α

∞ ∞

−∞ −∞

+ − +⎛ ⎞
⎜ ⎟
⎝ ⎠∫ ∫

 (1) 
When α = 0, it becomes the identity operation. When α = π/2, 
it becomes the Fourier transform (FT) together with the axis 
exchange operation. The gyrator transform has additivity and 
periodic properties: 
                ( ){ } ( ), ,gy gy gyO O g x y O g x yα β α β+=⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ,   (2) 

                    ( ) ( )2 , ,gy gyO g x y O g x yα π α+ =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ .        (3) 

The gyrator transform was found to be useful in optics 
[1][2][3], image processing [1][5], and encryption [6].   

The gyrator transform is very similar to the 2-D frac-
tional Fourier transform (2-D FRFT) [4]:    

    [ ]
2 2( cot cot )

2
,

1 cot 1 cot
( , )

2

j u vj j
FRFT g x y e

α γ

α γ
α γ
π

+− −
= ×  

   ( )
2 2( cot cot )( csc csc ) 2 ,

j x yj ux vye e g x y dxdy
α γα γ +∞ ∞ − +

−∞ −∞∫ ∫        (4) 

Both the FRFT and the gyrator transform can be viewed 
as the extensions of the Fourier analysis. Thus, as the 
FRFT [4], we believe that the gyrator transform can also be 
very useful in signal processing. The motivation of this pa-
per is to explore the implementation algorithms and the pos-
sible signal processing applications of the gyrator transform.  

First, in Section 2, we describe two efficient ways to 
digitally implement the gyrator transform. Then, we derive 
several properties in Section 3. In Section 4, we discuss the 
eigenfunctions of the gyrator transform and use them to dis-
cuss the self-imaging phenomena of the optical system re-
lated to the gyrator transform. In Section 5, we show that the 
gyrator transform can be useful in signal sampling, filter de-
sign, and communication.  

2.        DIGITAL IMPLEMENTATION   

The optical implementation of the gyrator transform is de-
scribed in [2]. Here, we discuss the digital implementation 
method. There are many ways to implement the gyrator 
transform digitally. We describe two of them.  
 
(Implementation Method 1):  
Suppose that the sampling intervals in the space and the fre-
quency domain are Δs, Δω, respectively:    
 [ ] ( )1 , ,s sg m n g m n= Δ Δ   [ ] ( ),1 , ,G p q G p qα α ω ω= Δ Δ . (5) 
Then (1) can be rewritten as:        

 
( )

[ ]

2
,1

2 2

1

, | csc | / 2

( )cos ( )
exp ,

sin

s

s s

m n

G p q

pq mn pn qm
j g m n

α

ω ω

α π

α
α

=Δ ×

⎛ ⎞Δ + Δ − + Δ Δ
⎜ ⎟
⎝ ⎠

∑∑
 (6) 

Therefore, if we choose Δs and Δω properly such that     
                          2 sin /s Nω π αΔ Δ = ,          (7) 
where N is some integer and N should be larger than the 
number of sampling points in x-axis and y-axis. Then the 
gyrator transform can be implemented by:    
(Step 1) [ ] [ ]2 cot

2 1, ,sjmng m n e g m nαΔ= ,   (8) 

(Step 2) [ ] [ ],2 2, exp 2 ,
m n

pm qnG p q j g m n
Nα π +⎛ ⎞= −⎜ ⎟

⎝ ⎠
∑∑ ,       

              (by the discrete Fourier transform (DFT)) (9)     

(Step 3) [ ] [ ]2 cot2
,1 ,3

| csc |, ,
2

jpq
sG p q e G p qω α

α α
α
π

Δ= Δ ,      (10)   

                where [ ] [ ],3 ,2, ,G p q G q pα α= .    (11) 
In Fig. 1, we show the results of using Method 1 to perform 
the gyrator transform for 256×256 Lena image. The running 
time for each figure is less than 0.5 sec (using PC and Mat-
lab). In Fig. 2, we show the results when varying the values 
of N in (7). When N is larger, the results can be a little clearer.   
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Fig. 1  The gyrator transform for 256×256 Lena image 

(choose N = 500). (a) Original image, (b) α = 0.5π, (c) 
α = 0.45π, (d) α = 0.4π, (e) α = 0.3π, (f) α = 0.2π.         

 
(Implementation Method 2):  
Sometimes, Δs and Δω are fixed and we cannot adjust them to 
satisfy (7). In this case, we can use the fact that   
  ( ) ( ) ( )2 2 2 2 2 22( )pn qm p n q m p q m n− + = − + − − + + + . (12) 
Thus, we can use the following process to implement the 
gyrator transform:   

(Step 1) [ ] [ ]
2 2

2( ) csc cot2
2 1, ,s

s

j m n jmng m n e e g m nω α α− + Δ Δ Δ=  (13) 

(Step 2) [ ],2 ,G p qα  

      [ ]2 2
2exp [( ) ( ) ] csc ,

2 s
m n

j p m q n g m nω α⎛ ⎞= − + − Δ Δ⎜ ⎟
⎝ ⎠

∑∑  

        ( ) [ ]2 2
2exp [ ] csc / 2 ,sj p q g p qω α= + Δ Δ ∗ ,  (14) 

(Step 3) [ ] [ ]
2 2

2( ) csc cot2 2
,1 ,2

| csc |, ,
2

s
j p q jpq

sG p q e e G q pω
ω

α α
α α

α
π

− + Δ Δ Δ= Δ . 

 (15) 
Compared with Method 1, Method 2 uses chirp convolution 
instead of performing the DFT in Step 2.  

Although there are other digital implementation methods, 
the algorithms described above can avoid geometric twisting 
or geometric rotation operations. In digital implementation, 
geometric twisting and rotation needs interpolation opera-
tions, which reduce accuracy  
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Fig. 2  The gyrator transform for Lena image when α = 0.2π, 
(a) N = 260, (b) N = 1200. 

3.        PROPERTIES  

In [1], several properties of the gyrator transform were de-
rived, including the shifting, scaling, modulation, and energy 
preservation properties. In the following, using the methods 
similar to those in [12][13], we derive other properties of the 
gyrator transform. We use Ogy

α to denote the gyrator trans-
form operation with order α and use Gα(u, v) to denote the 
gyrator transform of g(x, y): 
                          ( ) [ ], ( , )gyG u v O g x yα

α = .  (16)  

(A) Multiplication Property  

  [ ] ( ) ( )( , ) , sin , cosgyO xg x y j G u v uG u v
v

α
α αα α∂= +

∂
.  (17) 

  [ ] ( ) ( )( , ) , sin , cosgyO yg x y j G u v vG u v
u

α
α αα α∂= +

∂
. (18)       

(Proof of (17)): From (1),  

 
( ),G u v
v

α∂
∂

    

( )
( )cos ( )

sin| csc | ( cot csc ) ,
2

uv xy uy vxj
ju jx e g x y dxdy

α
αα α α

π

+ − +∞ ∞

−∞ −∞
= −∫ ∫  

( ) ( ), cot , cscgyjuG u v j O x g x yα
α α α= − ⎡ ⎤⎣ ⎦ .  (19) 

Multiplying both sides by jsinα, we obtain (17).     # 
(B) Differentiation Property        

( ) ( )( , ) , cos , singyO g x y G u v j vG u v
x u

α
α αα α∂ ∂⎡ ⎤ = +⎢ ⎥∂ ∂⎣ ⎦

, (20) 

( ) ( )( , ) , cos , singyO g x y G u v j uG u v
y v

α
α αα α⎡ ⎤∂ ∂= +⎢ ⎥∂ ∂⎣ ⎦

. (21) 

(Proof):  ( ) ( ), ,gyg x y O G u vα
α

−= ⎡ ⎤⎣ ⎦        

       ( )
( )cos ( )

sin
| csc | ,

2
xy uv xv uyje G u v dudv

α
α

α
α
π

− + + +∞ ∞

−∞ −∞
= ∫ ∫ ,  

  
( ), | csc |

2
g x y

x
α
π

∂
= ×

∂
 

  ( ) ( )
( ) cos ( )

sincsc cot ,
xy uv xv uyjj v y e G u v dudv

α
α

αα α
− + + +∞ ∞

−∞ −∞
−∫ ∫ ,         

      
( ) ( ) ( )

,
csc ( , ) cot ,gy

g x y
j O vG u v jy g x y

x
α

αα α−∂
= −

∂
,       

 ( ) ( )( )( , ) csc , cot ,gy gy
g x yO jv G u v j O yg x y

x
α α

αα α∂⎛ ⎞ = −⎜ ⎟∂⎝ ⎠
. (22) 

Then, we substitute (18) into (22). After some computation, 
we obtain (20).  #  

(a) (b)

(c) (d)

(e) (f) 
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(C) Conjugation Property     
                      ( )( , ) ,gyO g x y G u vα

α
∗ ∗

−⎡ ⎤ =⎣ ⎦ .              (23)  

(D) Relation with the Scaling operation:   
Note that, from (1),                   
( )

( )2tan
cot (1 tan ) ( )csc cot

,

,
2 | sin |

juv
juv j uy vx jxy

G u v

e e e e g x y dxdy

α

α
α α α α

π α
− ∞ ∞ + − +

−∞ −∞
= ∫ ∫

 

( )
costan

sin cos sin sin ,
2 | sin |

uv uy vx xyjuv j j je e e e g x y dxdy
αα

α α α α

π α

+− −∞ ∞

−∞ −∞
= ∫ ∫  

( )
tan ( cos )( cos )exp ,

2 | sin | sin cos
juv u x v ye j g x y dxdy

α α α
π α α α
− ∞ ∞

−∞ −∞

− −⎛ ⎞= ⎜ ⎟
⎝ ⎠∫ ∫  

tan

2
( )( )exp ,
sin cos cos cos2 | sin cos |

juv u x v y ye xj g dxdy
α

α α α απ α α

− ∞ ∞

−∞ −∞

− −⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∫ ∫ . 

Therefore,    

      ( )

2exp ,sin(2 ) cos cos
,

| sin(2 )cos |

xy yxj g
G u vα

α α α
π α α

⎛ ⎞ ⎛ ⎞∗⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠=  (24) 

That is, the gyrator transform with parameter α has a very 
close relation with g(x/cosα, y/cosα). This can explain why 
in Fig. 1 the results of the gyrator transform seems to be the 
scaling of the original image especially when α is small.       
(E) Relations between the Gyrator Transform and the FRFT.  
          ( ) [ ]{ }/4 /4

,, ( , )rot rotG u v O FRFT O g x yπ π
α α α

−
− ⎡ ⎤= ⎣ ⎦ ,  (25) 

where [ ]( , )rotO g x yφ  means the geometric rotation operation:   

    [ ] ( )( , ) cos sin , sin cosrotO g x y g x y x yφ φ φ φ φ= − + .  (26) 

4.        EIGENFUNCTIONS AND SELF-IMAGING 
PHENOMENA  

4.1 Eigenfunctions  

[Theorem 1] If e(x, y) is an eigenvector of the 2-D FRFT 
with parameters (α, −α) and the eigenvalue is λ:  
                      [ ], ( , ) ( , )FRFT e x y e x yα α λ− = ,       (27) 
then   

                       ( ), ,
2 2

x y x yf x y e⎛ + − + ⎞
= ⎜ ⎟

⎝ ⎠
     (28) 

is the eigenvector of the gyrator transform and the eigenvalue 
is also λ:      
                        ( ) ( ), ,gyO f x y f x yα λ=⎡ ⎤⎣ ⎦ .      (29) 

In other words the eigenfunctions of the gyrator transform 
is the rotation of those of the FRFT with 45 degree:     
                         ( ) [ ]/ 4, ( , )rotf x y O e x yπ−= .  (30) 
(Proof): From the relation between the gyrator transform and 
the 2-D FRFT in (25),   
       ( ) [ ]{ }/4 /4

,, ( , )gy rot rotO f x y O FRFT O f x yα π π
α α

−
− ⎡ ⎤=⎡ ⎤⎣ ⎦ ⎣ ⎦   

 [ ]{ } { }/ 4 / 4
, ( , ) ( , )rot rotO FRFT e x y O e x yπ π

α α λ− −
−= = .         # 

[Corollary 1] From Theorem 1, we can derive the eigenfunc-
tions of the gyrator transform from those of the FRFT. For 
example, 2-D Hermite-Gaussians are the eigenfunctions of 
the 2-D FRFT:  

             ( ) ( ) ( )
2 2

2
, ,

x y

m n m nHG x y e h x h y
+

−
= ,            (31) 

where hm(x) is the mth order Hermite polynomial, and  
         ( ) ( ) ( ), , ,, ,j n m

m n m nFRFT HG x y e HG x yα
α α

−
− ⎡ ⎤ =⎣ ⎦ .  (32) 

Therefore, from Theorem 1, the following function will be 
the eigenfunction of the gyrator transform:   

           ( )
2 2

2
, ,

2 2

x y

m n m n
x y x yx y e h h

+
− ⎛ + ⎞ ⎛ − + ⎞

Ψ = ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

      (33) 

and    
                ( ) ( ) ( ), ,, ,j n m

gy m n m nO x y e x yαα −⎡ ⎤Ψ = Ψ⎣ ⎦ .    (34) 

 

[Corollary 2] Moreover, from (34), λ = exp(jα(n−m)). Since 
when m−n is fixed, the corresponding eigenvalue is the same, 
thus, if we do linear combination for (38):   

       ( )
2 2

2

0
,

2 2

x y m

k m k m
k

x y x yx y e a h h
+

−

−
=

⎛ + ⎞ ⎛ − + ⎞
Φ = ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑  (35) 

then Φ(x, y) is also an eigenfunction of the gyrator transform 
and the corresponding eigenvalue is exp(−jαk).    
 
4.2  Self-Imaging Phenomena 
Since the gyrator transform can be modelled by optical sys-
tems [2][3], therefore, the eigenfunctions of the gyrator trans-
form can causes the self-imaging phenomena of these optical 
systems.        

However, for analyzing the self-imaging phenomena, 
the constraint can be more relaxed. Since in optics, only the 
intensity is observed and the difference of scaling is tolerated 
when discussing the self-imaging phenomena, therefore, if   
    ( ) ( ), ,gyO s x y z u vα =⎡ ⎤⎣ ⎦ ,   and ( ) ( ), ,z x y s x yτ σ σ=  (36) 
then s(x, y) will also cause the self-imaging phenomena for 
the optical system that can be implemented by the gyrator 
transform.       

In addition to (25), the gyrator transform can also be 
expressed as a combination of the rotation operations and the 
linear canonical transform (LCT) if the difference of phase 
and scaling is ignored:  

( ) [ ]{ }/ 4 /4
( , , , ),( , , , ), ( , )rot a b c d a b c d rotK u v O LCT O g x yπ π

α
−

− − ⎡ ⎤= ⎣ ⎦ , (37) 

       ( ) ( )
2tan

sin( /2), ,
cos cos

bcj uv au avG u v e K
α

α
α α α α

⎛ ⎞
− +⎜ ⎟

⎝ ⎠= ,  (38) 

where [ ]( , )rotO g x yφ  is defined in (26) and the LCT is defined 
as [7]: 

    ( )
2 21

1
1 1 1 1

( )
2 2

( , , , , , , , )
1

1,
2

ddj u v
b b

a b c d a b c dLCT g x y e
bbπ

+

= ×⎡ ⎤⎣ ⎦ −
          

             ( )
2 21

1 1
( ) ( )

2 2 ,
aux vy aj j x y

b b b be e g x y dxdy
− + +∞ ∞

−∞ −∞∫ ∫ ,      (39) 
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and the parameters in (37) should satisfy    
           a  : b =  cosα : sinα    and    ad − bc = 1.    (40) 
Therefore, if p(x, y) is the eigenfunction of the 2-D LCT with 
parameter {a, b, c, d, a, −b, −c, d}:   
            ( ) ( )

1 1 1 1( , , , , , , , ) , ,a b c d a b c dLCT p x y p x yλ=⎡ ⎤⎣ ⎦    (41) 
after performing geometric rotation for p(x, y):  

           ( ) [ ]/ 4, ( , ) ,
2 2rot

x y x yq x y O p x y pπ− ⎛ + − + ⎞
= = ⎜ ⎟

⎝ ⎠
,  (42) 

then, from (42) and (43),    

( ) ( ) ( )
2tan

sin( /2), , ,
cos cos

bcj uv

gy
au avQ u v O q x y e q

α
αα

α λ
α α

⎛ ⎞
− +⎜ ⎟
⎝ ⎠= =⎡ ⎤⎣ ⎦ , (43) 

               ( ) ( ), / cos , / cosQ u v q au avα α α= .     (44) 

Since q(x, y) and Qα(u, v) only differ in scaling, q(x, y), i.e., 
the rotation of the eigenfunctions of the 2-D LCT, will 
case the self-imaging phenomena of the gyrator trans-
form. From [8], the eigenfunctions of the LCT are Hermite-
Gaussian functions, impulse trains, and fractals together with 
scaling, chirp multiplication, and chirp convolution. After 
rotating them by 45 degree, as in (42), these functions can all 
cause the self-imaging phenomena of the gyrator transform.       

5.        APPLICATIONS      

As the FRFT, the gyrator transform can be viewed as an ex-
tension of Fourier analysis. Therefore, many applications of 
the Fourier transform and the FRFT can also be viewed as 
the applications of the gyrator transform. The applications of 
the gyrator transform in optics, image processing and en-
cryption were introduced in [1][2][3][5][6]. Here, we discuss 
other possible applications of the gyrator transform.      

 
5.1     Sampling Theory     
Suppose that a signal g(x, y) is limited in the gyrator trans-
form domain:    
           ( ), 0G u vα =      when |u| > B1,    |v| > B2.        (45) 
Note that, if a signal satisfies (45), then it is impossible to be 
band-limited in the frequency transform and we cannot use 
the conventional Shannon’s Sampling Theorem to sample 
the signal. However, we can use the gyrator transform to 
sample it. If we performing sampling for g(x, y):           
   ( ) ( ) ( )1 , , ,x y x y

m n
g x y g m n x m y nδ= Δ Δ − Δ − Δ∑∑ , (46) 

then the gyrator transform of g1(x, y) is  

   ( )
( )

cot cotsin
1,

| csc |,
2

uy vxjjuv jxyG u v e e eα αα
α

α
π

+
−∞ ∞

−∞ −∞
= ∫ ∫  

             ( ) ( ), ,x y x y
m n

g m n x m y n dxdyδΔ Δ − Δ − Δ∑∑ . (47) 

Then, since from the Fourier transform pair for the comb 
function [14]  

( ) ( )2 ( ) , ,j ux vy
x y x y

m n
e f m n x m y n dxdyπ δ

∞ ∞ − +

−∞ −∞
Δ Δ − Δ − Δ∑∑∫ ∫

( )1 / , /x y
x y m n

F u m v n= − Δ − Δ
Δ Δ ∑∑ ,             (48) 

( ) ( )
( )

sin , ,
vx uyj

x y x y
m n

e f m n x m y n dxdyα δ
+

−∞ ∞

−∞ −∞
Δ Δ − Δ − Δ∑∑∫ ∫  

      1 ,
2 sin 2 sinx y x ym n

v m u nF
π α π α

⎛ ⎞
= − −⎜ ⎟Δ Δ Δ Δ⎝ ⎠

∑∑ . (49) 

After substituting exp(jxycotα)g(x, y) into f(x, y) in (49), (47) 
can be rewritten as 

 
( )1,

cot

,

| csc | ,
2 2 sin 2 sin

juv

x y x ym n

G u v

v m u ne F

α

αα
π π α π α

⎛ ⎞
= − −⎜ ⎟Δ Δ Δ Δ⎝ ⎠

∑∑
  (50) 

where ( ) ( )2 ( ) cot, ,j ux vy jxyF u v e e g x y dxdyπ α∞ ∞ − +

−∞ −∞
= ∫ ∫  

     ( )2 24 sin cot2 | sin | 2 sin , 2 sinjuve G v uπ α α
απ α π α π α−= .(51) 

Therefore, the relation between the gyrator transform of g(x, 
y) and that of g1(x, y) is:    

 ( )1,
1, 2 sin , 2 sin
x y y xm n

n mG u v G u vα α π α π α
⎛ ⎞

= − −⎜ ⎟Δ Δ Δ Δ⎝ ⎠
∑∑      

                     
( ( 2 sin )( 2 sin ))cotn m

y x
j uv u v

e
π α π α αΔ Δ− − −

.        (52) 
From (52), if we choose the sampling intervals properly: 

            
2

sinx B
π αΔ <       and      

1
siny B

π αΔ < ,   (53) 

then we can reconstruct g(x, y) from g1(x, y) by placing a 
lowpass mask in the gyrator transform domain:  
                 ( ) ( ) ( )1,, , ,x yG u v M u v G u vα α= Δ Δ ,  (54) 

                ( ) ( ) ( ){ }1,, , ,gyg x y O M u v G u vα
α

−= ,   (55) 
                  M(u, v) = 1 if |u| < C1 and |v| < C2,   (56) 
                          M(u, v) = 0 otherwise,   (57) 
    1 1 1

2 sin
y

B C Bπ α< < −
Δ

,   2 2 2
2 sin

x
B C Bπ α< < −

Δ
.   (58) 

Therefore, even if a signal is not limited in the frequency 
domain, if it satisfies (45), we can use the gyrator transform 
and the above process to sample and reconstruct the signal.    

 
5.2     Filter Design    
As the FT and the FRFT, the gyrator transform is also useful 
for filter design. That is, we can perform the gyrator trans-
form for a noise-interfered signal, then multiply the result by 
a transfer function, and then perform the inverse gyrator 
transform to recover the original signal:  
             ( ) ( ) ( ){ }, , ,o gy gy ig x y O H u v O g x yα α−= ⎡ ⎤⎣ ⎦ .     (59) 

Note that the reconstruction process in (55) is a special case 
of the filter designed by the gyrator transform.  

As the filter designed by the FRFT, which is suitable for 
filtering the chirp noise [10], the filter designed by the gyra-
tor transform can be used for filtering the noise that has the 
form of the summation of  
                      exp(jτ1xy + jτ2x +jτ3y).     (60) 
Moreover, analogous to the applications of the filter de-
signed by the FRFT, the filter designed by the gyrator trans-
form is also useful for space-variant pattern recognition, 
edge detection, and wavelet analysis.             
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         (a) Original image + noise    (b) 2-D FT for (a)            
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        (c) gyrator transform for (a)   (d) Reconstructed signal                 
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Fig. 3  The simulation of using the gyrator transform for 

filter design.    
For example, in Fig. 3(a), the signal is interfered by a 

quadratic phase noise. If we perform the 2-D Fourier trans-
form for Fig. 3(a), the noise part and the signal part cannot 
be separated, as in Fig. 3(b). By contrast, if we perform the 
gyrator transform for Fig. 3(a), the signal part and the noise 
part can be well separated, as in Fig. 3(c). After performing 
the inverse gyrator transform, the original image is recov-
ered. See Fig. 3(d).  

 
5.3     Wave Propagation Analysis       
We have discussed that the gyrator transform is useful for 
analyzing the self-imaging phenomena in optics in Section 
4.2. Similarly, the gyrator transform is also useful for ana-
lyzing other electromagnetic wave propagation phenomena, 
such as radar system analysis and gradient index filter sys-
tem analysis. The gyrator transform is useful for analyzing 
the resonance phenomena of these systems.      

 
6.        CONCLUSIONS              

In this paper, we derive the properties and eigenfunction of 
the gyrator transform. We also discuss its digital implemen-
tation algorithms and describe its applications for filter de-
sign, sampling theory, and optical system analysis. As the 
FRFT, the gyrator transform will become a useful tool in 
signal analysis.      
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