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ABSTRACT

We consider the use of an arbitrary planar array for direction-of-
arrival (DOA) estimation, with the commonly used Cramér-Rao
Bound (CRB) as a performance measure. By taking advantage of
the cosine structure of the array Fisher information matrix(FIM),
the FIM is reformulated to be completely represented by three pa-
rameters which depend on the array geometry, leading to a new
FIM expression that reflects the impact of individual sensorreloca-
tions. The proposed expressions are particularly helpful for finding
new sensor positions when given an objective FIM or CRB, and
applies in certain more general scenarios. This usefulnessis con-
firmed through the practical application of relocating a single sen-
sor of an arbitrary planar array to achieve an FIM and CRB with
given angular distribution.

1. INTRODUCTION

Direction of arrival (DOA) estimation using an antenna array
has attracted much research interest, resulting in numerous
estimation techniques [1], and several array design methods
for common array geometries (see references in [2]). A pop-
ular performance measure is the Cramér-Rao Bound (CRB),
because it describes the best achievable estimation perfor-
mance for a general array, irrespective of the estimation algo-
rithm [3]. The single source CRB is particularly interesting
for its relative simplicity, and because it was shown in [4]
to be attainable by the MUSIC algorithm of [5]. The CRB
is further simplified when the array is planar, because for a
fixed source elevation angle, it becomes a cosine function of
the source azimuth [6]. The use of polar coordinates to de-
fine sensor locations can yield more compact expressions of
the CRB [6], but cartesian coordinates are useful for indi-
cating how the CRB is affected by specific array geometry
characteristics, such as the array variance [7], or the moment
of inertia of projected locations [2]. We wish to explore the
dependance of the CRB on individual sensor locations, and
consequently adopt the cartesian coordinate system.

The main contribution of this paper is to provide expres-
sions of the Cramér-Rao bound which reflect the impact of
individual sensor relocations. We develop these expressions
by completely characterising the Fisher information matrix
by three parameters, then by rewriting these to reflect the im-
pact of individual sensor locations. These expressions are
useful for finding the CRB of a given array, or more inter-
estingly in solving for sensor locations given a CRB or con-
straints on the CRB. We apply the new expressions to solving
a sensor relocation problem when the CRB is constrained to
a given distribution over the azimuth range. We also explain
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how despite the planar array and coplanar source assump-
tions, our expressions apply to some more general scenarios.

This paper is organized as follows. Section 2 describes
the assumptions, signal model, and existing expressions of
the single source CRB and FIM. In Section 3, we reformu-
late the FIM to reflect its dependance on individual sensor
locations. In Section 4, the FIM is expressed as a function
of individual sensor relocations, and an expression is given
for the special case where all but one sensor is relocated. We
then apply those results in Section 5, where we consider the
practical application of relocating a single sensor of an arbi-
trary array to achieve an FIM with given angular distribution.
Conclusions follow in Section 6.

2. SYSTEM MODEL AND SINGLE SOURCE CRB

We consider a planar array ofM isotropic sensors, where the
mth sensor is located atrm = [xm,ym]T and the location matrix
of the entire array is given by:

r = [r1, r2, ..., rM] =

[

x1 x2 ... xM
y1 y2 ... yM

]

.

The centroid of this array is defined as

ro =

[

xo
yo

]

=
1
M

M

∑
m=1

rm =
1
M

M

∑
m=1

[

xm
ym

]

.

A single coplanar wideband source impinges on the array
with additive noise from directionθ in the far field, whereθ
is the azimuth angle measured counter-clockwise from thex-
axis. We define the unit vector pointing towards the source
asu(θ ) = [cosθ ,sinθ ]T .

The source and noise signals are assumed to be zero mean
Gaussian and mutually independent, and the noise collected
at any two sensors is mutually independent as well. Over the
observation period,N independent and identically distributed
snapshots are taken, and within each snapshot we apply aJ-
point discrete Fourier transform to the wideband source.

For such a system model, a formulation of the CRB on
the source DOA estimate is given in [8], based on the work
in [3], [9], [10]. [2] further modified this to a more intuitive
set of equations, which we use in a slightly modified form:

CRB(θ ) = [FIM (θ )]−1 = [G(r ,θ ) ·P]−1 ,

P =
2N

c2

J

∑
j=1

ω2
j

n j
p j

(

1−
n j

p jM +n j

)

,

G(r ,θ ) =
du(θ )

dθ

T
(

M

∑
m=1

(rm− ro)(rm− ro)
T

)

du(θ )

dθ
,
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Figure 1:FIM of a 3 sensor array (—), and the 3 sine wave contri-
butions from individual sensors(· · ·).

where FIM is the array Fisher information matrix,c is the
speed of propagation, andp j andn j are the signal power and
noise power within thejth frequency interval, centred onω j .

In order to better reflect the contribution of individual
sensors to the CRB, we use the definitions ofu(θ ), r i and
ro to express the FIM in a format similar to the ones used
in [7] and [11]:

FIM (θ ) = P
M

∑
m=1

((xm−xo)sinθ − (ym−yo)cosθ )2 . (1)

3. FIM DEPENDENCE ON SENSOR LOCATIONS

3.1 Contribution of individual sensors to the FIM

Applying trigonometric identities, we can rewrite the indi-
vidual contribution of themth sensor to obtain the FIM as the
following cosine function:

FIM (θ ) =
P
2

M

∑
m=1

{

(xm−xo)
2 +(ym−yo)

2
}

×{1−cos(2θ −2arctan(ym−yo,xm−xo))} , (2)

wherearctan(y,x) is the generalization ofarctan(y/x) over
the entire circular range.

The FIM is therefore a summation of cosine functions,
where each such function depends on a single set of sensor
coordinates according to (2). An illustration of this fact is
given in Fig.1 using an arbitrary three sensor array.

3.2 FIM as a cosine function

In [6], the CRB of an array was shown to always be a co-
sine function of the source azimuth, with double the azimuth
frequency2θ . The fact that the FIM is a summation of co-
sine functions with the same frequency agrees with this re-
sult. Due to this sine function structure, the FIM can be com-
pletely defined by three parameters and can be written as:

FIM (θ ) = Rcos(2θ +Φ)+C, (3)

where the parametersR, C, andΦ depend onP and on the
array sensor locations. More specifically, the amplitudeR,
amplitude shiftC, and phase shiftΦ of the FIM depend onP
and the amplitudes, amplitude shifts, and phase shifts of the
sine waves produced by the sensor locations via (2). Expres-
sions for these parameters are derived in Section 3.4.

3.3 FIM matching: a system of three equations

Because three parameters are sufficient to define any FIM,
the problem of designing an unconstrained array to match
any FIM sums up to a system of three equations that are inde-
pendent ofθ . A particular advantage of this is that the prob-
lem only involves variables with specific values, and omitsθ
which is defined over an angular range.

The problem of designing an array to match a specific
FIM can be seen as an attempt to match two sine functions.
The first sine function is given, while the second is defined
by (3). Matching two sine waves only requires three match-
ing points. Thus, selecting three angles with convenient co-
sine terms, this problem resumes to solving (4), where the
left hand sides are given as objectives, and the right hand
sides are dependant on the array FIM parametersR, C, Φ.



















FIM
(π

2

)

= C−RcosΦ,

FIM (0) = C+RcosΦ,

FIM
(

3π
4

)

= C+RsinΦ.

(4)

3.4 FIM parameter definitions

Expressions forR, Φ, andC as functions of sensor locations
shall now be derived.

The following system of equations is obtained by apply-
ing trigonometric identities to (2) and (3).







































RcosΦ =
P
2

M

∑
m=1

−(xm−xo)
2 +(ym−yo)

2,

C =
P
2

M

∑
m=1

(xm−xo)
2 +(ym−yo)

2,

RsinΦ = P
M

∑
m=1

(xm−xo)(ym−yo).

Expanding this and applying the definitions ofxo andyo,
the sensor coordinates can be isolated from the centroid co-
ordinates:











































RcosΦ =
P
2

(

Mx2
o−My2

o +
M

∑
m=1

−x2
m+y2

m

)

,

C =
P
2

(

−Mx2
o−My2

o +
M

∑
m=1

x2
m+y2

m

)

,

RsinΦ = P

(

−Mxoyo +
M

∑
m=1

xmym

)

.

(5)

The FIM parameters can be determined from (5) through
the simple application ofR=

√

(Rcos(Φ))2 +(Rsin(Φ))2 and
Φ = arctan(Rsin(Φ),Rcos(Φ)). Thus, (5) is useful in determin-
ing the FIM parameters for given sensor locations.

1142



3.5 Simplifying the FIM expression

The system of equations (5) can be reformulated into (6).
The advantage of the latter form is that specific parameter
combinations are shown to depend on one of three isolated
coordinate groupings: thex-coordinates, they-coordinates,
or the cross terms betweenx andy cooordinates. Thus, (6)
should simplify the task of solving for sensor locations when
given a set of FIM parameters.











































C−RcosΦ = P

(

−Mx2
o +

M

∑
m=1

x2
m

)

,

C+RcosΦ = P

(

−My2
o +

M

∑
m=1

y2
m

)

,

RsinΦ = P

(

−Mxoyo +
M

∑
m=1

xmym

)

.

(6)

4. FIM DEPENDENCE ON SENSOR MOVEMENT

4.1 Multiple sensor relocation

We will now consider the effect of sensor relocation on the
FIM of an array. The relocation is represented by addition of
a relocation arrayR to the existing arrayr , with R defined as

R = [R1,R2, ...,Rm] =

[

X1 X2 ... Xm
Y1 Y2 ... Ym

]

.

The relocation array’s centroid is defined as

Ro =

[

Xo
Yo

]

=
1
M

M

∑
m=1

Rm =
1
M

M

∑
m=1

[

Xm
Ym

]

.

As a result of adding the two array location matricesr
andR, themth sensor is relocated to(xm + Xm,ym +Ym) and
the new array centroid is(xo + Xo,yo +Yo). By substituting
this information into (6), we obtain the relocated array’s FIM
given in (7).















































C−RcosΦ = P

(

−M(xo +Xo)
2 +

m

∑
m=1

(xm+Xm)2

)

,

C+RcosΦ = P

(

−M(yo +Yo)
2 +

m

∑
m=1

(ym+Ym)2

)

,

RsinΦ = −PM(xo +Xo)(yo +Yo)

+P
m

∑
m=1

(xm+Xm)(ym+Ym).

(7)

4.2 Single sensor relocation

If we only move a single sensor while maintaining all of
the other sensors stationary, we can identify the impact that
moving each sensor has on the overall array’s FIM. By mov-
ing thekth sensor from(xk,yk) to (xk +Xk,yk +Yk), (7) can be
rewritten as (8) or (9):











RcosΦ = a(Y2
k −X2

k )−bXk +cYk−d+e,

C = a(X2
k +Y2

k )+bXk +cYk +d+e,

RsinΦ = 2aXkYk +cXk +bYk + f .

(8)











C−RcosΦ = 2(aX2
k +bXk +d),

C+RcosΦ = 2(aY2
k +cYk +e),

RsinΦ = 2aXkYk +cXk +bYk + f .

(9)

where the constantsa- f are defined as:

a =
P(M−1)

2M
, d =

P
2

M

∑
m=1

x2
m−x2

o ,

b = P(xk−xo) , e=
P
2

M

∑
m=1

y2
m−y2

o ,

c = P(yk−yo) , f = P
M

∑
m=1

xmym−xoyo .

In the same way that (5) is helpful for calculating FIM
parameters from a given array, (8) is useful for calculating
the FIM parameters for a given displacement of thekth sen-
sor. Just as (6) is useful for designing an array for a given
objective FIM, (9) can help determine a new location for the
kth sensor given FIM parameter values.

4.3 Relevance to more general scenarios

The expressions of Sections 3 and 4 were derived under the
planar array and coplanar source assumptions. Nevertheless,
the expressions are applicable to certain more general scenar-
ios. Two such scenarios shall now be outlined, accompanied
by the provisions for applying our expressions:

• In the case of 3-D source estimation with a planar array,
the scenario can be completely characterised by a scalar-
valued function of the source azimuth, where the scaling
depends on source elevation [6]. Therefore, the prob-
lem can be reduced to coplanar source estimation with a
planar array, provided that the objective CRB is scaled
according to the source elevation, or that the objective
CRB constraints are independent of the source elevation
scaling. The design example of Section 5 demonstrates
the latter case, since the CRB is constrained by a given
direction and directivity.

• The second scenario to consider is the particular yet prac-
tical case of 3-D estimation with a 3-D array where phys-
ical limitations lead to a lack of control over the sensor
elevations. This would occur, for instance, when an ar-
ray of wireless sensors are scattered outdoors over an un-
known uneven surface. Because the vertical coordinates
are arbitrary, our array improvement must solely rely on
planar coordinates. Therefore, from an array design per-
spective, the problem reduces to 3-D source estimation
with a planar array, which as mentioned in the previous
point can be further reduced to coplanar source estima-
tion with a planar array.

5. APPLICATION: SINGLE SENSOR MOVEMENT
FOR CRB CONSTRAINT MATCHING

5.1 Problem statement

In this section, the expressions derived in Sections 3 and 4 are
applied. We consider the problem of moving one sensor from
an arbitrary array to improve that array’s potential estimation
capability, using the CRB as a performance measure.

A scenario which from an array design perspective is re-
duced to a planar array for estimation of a coplanar source is
considered (see Section 4.3). In such a case, the CRB is sim-
ply the inverse of the one-by-one Fisher information matrix,
so any CRB requirements can be trivially translated into FIM
parameters, and the results of Sections 3 and 4 are applicable.
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5.2 Specifying the objective FIM parameters

If we were to aim for a specific FIM with specific values
of C,R, andΦ, solving (9) would require the two quadratics
in the first and second lines to share the same roots. Given
that their leading coefficients are the same, this would mean
that these quadratics are identical. This would only happen
if b = c and e = d + 2RcosΦ, which is so restrictive on the
starting array and FIM parameter values that a solution is
unlikely to exist. Thus, less restrictive constraints on the FIM
are needed for a reasonable solution space.

The constraint of bothΦ andR/C is meaningful because
together these parameters define the relative distributionof
the CRB over the azimuth range. The directionΦ corre-
sponds to the bearing where the FIM is lowest, and the direc-
tivity R/C indicates how anisotropic the array is on a scale of
0 (isotropic array) to 1 (linear array). The distribution ofthe
FIM over the bearing range is significant because it indicates
which directions should see performance improvements and
which directions can be compromised to allow such benefits.

We consider the design of the FIM angular distribution
through Φ and R/C, with the understanding that for de-
signing optimal arrays, these results would need to be bal-
anced with additional objectives such as FIM maximization
or application-specific array geometry restrictions.

In order to make the most of the given parametersΦ and
R/C, (9) can be rewritten in the following form:























C(1−
R
C

cosΦ) = 2(aX2
k +bXk +d),

C(1+
R
C

cosΦ) = 2(aY2
k +cYk +e),

C
R
C

sinΦ = 2aXkYk +cXk +bYk + f .

(10)

5.3 Solutions

A method to solving (10) shall now be given, by working
through the general and special cases that can arise.

5.3.1 General case:sinΦ 6= 0, cosΦ 6= ±C/R

In the general case, (10) can be rewritten as the following:























































C =
2(aX2

k +bXk +d)

1− R
C cosΦ

,

C =
2(aY2

k +cYk +e)

1+ R
C cosΦ

,

C =
2aXkYk +cXk +bYk + f

R
C sinΦ

.

C is eliminated from this system by setting the right hand
sides (RHS) of each equation equal to each other. By setting
the RHS of the first equation to equal the RHS of the third,
and the RHS of the second to equal the RHS of the third, than
the RHS of the first equals the RHS of the second. Thus, this
system of three equations can be reduced to the following
system of two equations:



























2(aX2
k +bXk +d)

1− R
C cosΦ

=
2aXkYk +cXk +bYk + f

R
C sinΦ

,

2(aY2
k +cYk +e)

1+ R
C cosΦ

=
2aXkYk +cXk +bYk + f

R
C sinΦ

.

(11)

The second line of (11) can be rearranged to yieldXk as
a function ofYk. Substituting this into the first line leads to a
quartic equation inYk which equates 0. Closed form solutions
for this equation yield its roots, of which the real ones are
the new y-coordinates of the kth sensor. These coordinates
Yk are then substituted into the second line of (11) to obtain
the complete(Xk,Yk) coordinates of the kth sensor. A linear
array cannot be obtained by relocating a single sensor if the
other sensors are not aligned, but in any other case, there are
exactly two real roots, so two solution locations.

5.3.2 Particular cases

Several particular cases exist where the general solution
method cannot be applied as it would require division by
zero:
• sinΦ = 0 andR/C = ±1
• sinΦ = 0 and R/C 6= ±1
• cosΦ = ±C/R

The first case corresponds to a linear array either parallel
or orthogonal to directionΦ, which is trivial to solve if all
but thekth sensor are aligned already, and has no solution
otherwise.

The last two cases are solved by first substituting the
known parameters into (10), before reducing the system of
three equations to a quartic polynomial as was done in the
general case.

5.4 Example

As an example, the techniques of Section 5.3 are applied to
an arbitrary10-sensor array with the objective to achieve an
FIM with R/C = 0.7 andΦ = π/3.

Fig.2 indicates all the original sensor locations, as well as
the solution locations for the single arbitrarily chosen sensor.
Fig.3 presents the FIM and CRB of the array before and af-
ter the sensor relocation; they have been normalized to have
peak values of 1 to ease identification of the directivityR/C.
The amplitudes and phase shifts of the functions in these fig-
ures confirm the achievement of our objective directivity of
0.7 and direction ofπ/3 by relocating a single sensor.

6. CONCLUSIONS

The single source wideband CRB was used as a performance
measure, which under the planar array and coplanar source
assumptions is trivially found by inverting the FIM. We de-
fined the FIM in terms of three parameters, and formulated
it to reflect the impact of individual sensor locations. The
existence of these three parameters simplifies the problem of
designing an unconstrained array for a particular FIM to a
system of three equations, thus avoiding optimisation over
the entire range ofθ .

We examined the effect of sensor movemement on the
FIM by rewriting it as a function of sensor locations and their
displacements. We also expressed the FIM for the particular
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Figure 2: Sensor locations for an arbitrary array before and after
relocating themth sensor.mth sensor starting location (•) and two
solution locations (⋄), other sensor locations (o), for M = 10,R/C =
0.7,Φ = π/3.
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Figure 3: (a) Normalised FIM and (b) normalised CRB, with an
arbitrary array before (- -) and after (—) relocating one sensor, for
M = 10,R/C = 0.7,Φ = π/3.

case where only one of the sensors is relocated. These ex-
pressions allow for the introduction of constraints on the ob-
jective FIM, and are particularly useful in modifying existing
arrays to achieve an FIM with specific characteristics.

Despite the planar array and coplanar source assump-
tions, our expressions are relevant to array geometry im-
provements in more general scenarios, namely 3-D source
estimation with a coplanar array, or even 3-D source estima-
tion with a 3-D array when the sensor elevation is arbitrary.

We applied our results to an array design problem where
we wish to achieve a given FIM direction and directivity by
moving a single sensor from a random array. We presented
the general solution, which reduces to solving a quartic equa-
tion, then gave an example where we took an arbitrarily se-
lected sensor from an arbitrary array, then found closed form
solutions for its new locations. These results should be a use-
ful contribution to multi-objective array design methods,par-
ticularly if complemented by other objectives such as CRB
minimisation and array geometry constraints.
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