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ABSTRACT

We propose a new direction-of-arrival (DOA) estimation method
suitable for autonomous mobile robots. Autonomous mobile robots
have to meet physical constraints of signal processing devices, such
as a space-saving microphone arrangement and few computational
resources. In addition, DOA estimation of the robots needs to be
robust to noise around the robots. In order to cope with the physical
constraints, we used four-line omni-directional micro mechanical
systems (MEMS) microphones. DOA estimation was conducted us-
ing statistical pattern recognition in which normalized spectral am-
plitudes, which were free from sound sources, were used as DOA
features. In the proposed method, strict head related transfer func-
tion estimation, which is not practically feasible, is not needed. In
addition, unlike many conventional methods, phase information is
not explicitly used because the phase information is unreliable in
the situation that we deal with, i.e., situations in which the micro-
phone spacings are small, or strong reflections and diffractions oc-
cur around the microphones. The feature vectors we used can cope
with these problems. Effectiveness of the proposed method was ex-
perimentally investigated in recognition of 19 DOAs in the presence
of diffuse noise: the proposed method achieved a DOA correct of
approximately 99% at a SNR of 0 dB.

1. INTRODUCTION

We attempt to achieve high-performance direction-of-arrival (DOA)
estimation, which is a basis of robot audition, using the compact
and light-weighted devices, which can be mounted on autonomous
mobile robots.

The problems addressed in the present study are common in
the research field of microphone array signal processing. Multiple
signal classification (MUSIC) is frequently applied to sound source
localization and DOA estimation[1]. Although this method works
effectively in noisy environments, steering vectors from a sound
source to microphones are required. If the microphones are placed
on free-fields, we can easily compute these steering vectors with
the characteristics of the delays between the designated source po-
sition and the microphones. However, when the microphones are
placed on the robot head (or body), the effects of the reflections and
diffractions induced by the robot cannot be ignored. In order to cope
with these effects, precise head related transfer functions (HRTFs)
of the robot were measured in all possible areas around the robot[2].
However, the measurement of such data is not practically feasible.
Nakadai et al. approximated the shape of the robot head by a sim-
ple sphere for computing the HRTFs geometrically[3]. However, in
most cases, robot heads are far from spherical.

Methods using time delays or phase differences between mi-
crophones (e.g., crosspower-spectrum phase (CSP)) were also fre-
quently applied to sound source localization and DOA estimation[4,
5, 6]. However, phase differences cannot be precisely estimated
when the microphone spacings are small as in the case of the present
study. In addition, when the microphones are mounted on the robot,
precise phase difference estimation is difficult because of the re-
flections and diffractions induced by the robot. In the case of near-
field, where sound sources and microphones do not exist on the

same plane, Sato et al. improved the performance of a sound source
localization system by using both the distance between the sound
source and the microphones and the heights of the sound source and
the microphones[7]. However, it is difficult to estimate the source
height precisely while the robot is moving.

In a previous paper, we proposed a DOA estimation method
that was free from strict HRTF measurements, by using four-line
directional microphones mounted on a robot head[8]. This method
required the use of directional microphones. However, it is difficult
to develop directional microphones using micro electro mechanical
systems (MEMS) technologies, which are necessary for the minia-
turization and weight-saving of microphone systems of autonomous
mobile robots. Therefore, the microphones and signal processing
devices could not be miniaturized easily.

In the present paper, we propose a new DOA estimation method
using omni-directional microphones, which are suitable for MEMS
technologies. In the present study, four-line analog MEMS omni-
directional microphones were placed on the top of the robot head. In
the proposed method, DOAs are estimated by pattern recognition:
feature extraction, which consists of multiple beamforming, spec-
tral amplitude normalization, temporal averaging, and filter-bank
analysis, is performed, and static pattern recognition with Gaussian
mixture models (GMM) is then carried out. In this case, the nor-
malized spectral amplitudes of the outputs of multiple beamform-
ers, which correspond to directional microphone observations, are
discriminative for each DOA, irrespective of sound source spectra.
It should be noted that the DOA features we used can cope with
the influences of the reflections and diffractions naturally, while the
conventional methods, using unreliable phase difference estimation,
degrade the performance of DOA estimation. In addition, the pro-
posed DOA estimation method is consistent with the noise reduc-
tion method we proposed in [9], which uses the same beamformer
outputs as used in the present study.

The rest of the present paper is organized as follows: The mi-
crophone system used is described in Section 2. In Section 3, we
describe a feature extraction method in detail. In Section 4, we de-
scribe a method for estimating the DOAs using pattern recognition.
In Section 5, we present conditions and results of DOA estimation
experiments. Finally, in Section 6, we present our concluding re-
marks.

2. MICROPHONE SYSTEMS

We used the compact and light-weighted microphones and sig-
nal processing devices, which were suitable to be mounted on au-
tonomous mobile robots.

2.1 MEMS microphone

We used four-line analog MEMS microphones manufactured by a
semiconductor integrated technology; they were significantly com-
pact and light-weighted. We used SPM0208HD5 as the micro-
phone. The width, depth, and height of this microphone is 4.72 mm,
3.76 mm, and 1.25 mm, respectively. We made 1.5-cm-square sub-
strates. Each of these substrates comprises a MEMS microphone
and peripheral circuits with a pre-amplifier. These substrates were
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Figure 1: Robot and microphone substrates.
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Figure 2: Microphone arrangement. This figure shows the top view
of the robot.

placed on the top of the robot head, as shown in Figure 1.

2.2 Microphone arrangement

Figure 2 shows a microphone arrangement. The microphones were
placed in a squared form, where the spacing between adjacent mi-
crophones was 2.8 cm and that between diagonally opposite micro-
phones was 4 cm. The microphone channels are labelled as shown
in Figure 2. In the present study, the front, right, and left direc-
tion of the robot are defined as zero, positive, and negative degrees,
respectively.

2.3 A/D conversion system

Four-channel analog signals received by the microphones were con-
verted into digital signals using a compact embedded device. The
device consists of SUZAKU-V.SZ310 and SID00-U00. SUZAKU-
V.SZ310 is an universal embedded device platform, which is based
on the combination of FPGA and Linux (with a PowerPC405 CPU
core) with a 10 BASE-T/100 BASE-TX Ethernet connector. SID00-
U00 is an eight-channel A/D conversion system, which is used as an
extension of the SUZAKU board. A resolution of the SID00-U00
was refined from its original 12 bits to 16 bits. The digital signals
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Figure 4: Directivity patterns of subtractive beamformers.

were transfered via Ethernet to a laptop PC mounted on the robot.
DOA estimation was then carried out on the laptop PC.

3. FEATURE EXTRACTION IN DOA ESTIMATION

DOA estimation was carried out by pattern recognition. We at-
tempted to extract DOA features that were free from sound source
spectra (i.e., speech utterances). Figure 3 shows a schematic dia-
gram of the feature extraction method. This method consists of four
stages of signal processing as follows: 1) multiple beamforming
for developing directivities, 2) spectral amplitude normalization for
eliminating the influence of the sound source spectra on the DOA
features, 3) temporal averaging for improving reliability of DOA
estimation, and 4) filter-bank analysis for reducing dimensionality
of feature vectors.

3.1 Multiple beamforming

In the present study, we developed four subtractive beamformers
using the microphone observations as follows:

B1(ω ,k) = X1(ω,k)−X3(ω ,k) (1)

B2(ω ,k) = X4(ω,k)−X2(ω ,k) (2)

B3(ω ,k) = X3(ω,k)−X2(ω ,k) (3)

B4(ω ,k) = X3(ω,k)−X4(ω ,k) (4)

where ω denotes the discrete frequency;k denotes the discrete
frame;Xi(ω ,k) denotes the spectral component of the observation
received by Mic-i; andB j (ω ,k) denotes the spectral component of
the j-th beamformer output. The directivity patterns of these beam-
formers are shown in Figure 4.

3.2 Spectral amplitude normalization

We assume the situation where a sound source exists and a sound
field is observed by the microphones. In this case, microphone ob-
servations are described as follows:

|X1(ω ,k)| = |G1(ω,θ)| · |S(ω,k)| (5)

|X2(ω ,k)| = |G2(ω,θ)| · |S(ω,k)| (6)

|X3(ω ,k)| = |G3(ω,θ)| · |S(ω,k)| (7)

|X4(ω ,k)| = |G4(ω,θ)| · |S(ω,k)| (8)

whereS(ω ,k) denotes the spectral component of a sound source;
Gi(ω ,θ) denotes the HRTF from the sound source to Mic-i; andθ
denotes the DOA.

We define the observation at Mic-3 as a reference signal.
The spectral amplitudes of the beamformer outputs,|B j (ω ,k)|,
were normalized by the spectral amplitude of the reference signal,
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Figure 3: Schematic diagram of feature extraction method.

|X3(ω ,k)|, as follows:

N1(ω,k) =
|B1(ω,k)|
|X3(ω,k)|

=
|G1(ω ,θ)−G3(ω ,θ)|

|G3(ω,θ)|
(9)

N2(ω,k) =
|B2(ω,k)|
|X3(ω,k)|

=
|G4(ω ,θ)−G2(ω ,θ)|

|G3(ω,θ)|
(10)

N3(ω,k) =
|B3(ω,k)|
|X3(ω,k)|

=
|G3(ω ,θ)−G2(ω ,θ)|

|G3(ω,θ)|
(11)

N4(ω,k) =
|B4(ω,k)|
|X3(ω,k)|

=
|G3(ω ,θ)−G4(ω ,θ)|

|G3(ω,θ)|
(12)

whereNj (ω ,k) denotes the spectral component of the normalized
spectral amplitude of the output of thej-th beamformer. In this case,
features used in DOA estimation should have only the DOA infor-
mation, and should be free from the sound source spectra. Spectral
amplitude normalization described in Equations 9, 10, 11, and 12
aims at removing the influence of the sound source spectra on the
DOA features. In this case, HRTFs are functions of DOAs. Ide-
ally, the normalized spectral amplitudes are determined by only the
DOAs, irrespective of the observed speech utterances, because they
are expressed with only the HRTFs as described in Equations 9, 10,
11, and 12. Therefore, the normalized spectral amplitudes are suit-
able for the DOA features. It should be noted that these features can
cope with the influence of the reflection and diffraction induced by
the robot head or body.

The influence of the sound sources can be eliminated even when
the omni-directional microphone observations are used instead of
the beamformer outputs. However, the features extracted from the
directional microphone observations (i.e., beamformer outputs) are
expected to be more discriminative as compared to those extracted
from the omni-directional microphone observations[8]. In addition,
the performance of DOA estimation can be improved by using ad-
ditional beamformers that are different in directivity fromB1, B2,
B3, andB4.

3.3 Temporal averaging

The normalized spectral amplitudes were extracted every frame.
For the case in which these amplitudes are used as DOA features,
DOA estimation can be more reliable by integrating these ampli-
tudes over multiple frames. Therefore, the normalized spectral am-
plitudes were averaged over all frames covered by a speech utter-
ance as follows:

Nj (ω) =
1
K

K

∑
k=1

Nj (ω,k) ( j = 1, · · · ,4) (13)

whereK denotes the number of frames in a speech utterance. In
this case, speech parts were detected with signal powers and zero-
crossing rates.

3.4 Filter-bank analysis

In order to reduce dimensionality of feature vectors, filter-bank
analysis was conducted. A filter bank that consists ofL-channel
triangular filters arranged on the frequency axis at regular intervals
was applied toN1(ω), N2(ω), N3(ω), andN4(ω). Each spectral
amplitude was multiplied by the corresponding filter gain, and the
results were then summed in the filter. Therefore, each filter-bank
coefficientci(l) holds a weighted sum of the normalized spectral
amplitudes in that filter-bank channel.ci(l) is described as follows:

c j (l) =
ωhi

∑
ω=ωlo

W(ω; l) · logNj (ω), (l = 1, · · · ,L) (14)

W(ω ; l) =





ω−ωlo(l)
ωc(l)−ωlo(l) , (ωlo(l) ≤ ω ≤ ωc(l))

ωhi(l)−ω
ωhi(l)−ωc(l)

, (ωc(l) ≤ ω ≤ ωhi(l))
(15)

whereωlo(l), ωc(l), andωhi(l) are the low, center, and high fre-
quency of thel -th filter-bank channel. In this case,Nj (ω) was
compressed into aL-dimensional vectorccc j using Equation 14 as
follows:

ccc1 = (c1(1), · · · ,c1(L)) (16)

ccc2 = (c2(1), · · · ,c2(L)) (17)

ccc3 = (c3(1), · · · ,c3(L)) (18)

ccc4 = (c4(1), · · · ,c4(L)) (19)

Consequently, a4 · L-dimensional vector(ccc1,ccc2,ccc3,ccc4) was ex-
tracted every utterance.

4. DOA ESTIMATION USING PATTERN RECOGNITION

Pattern recognition was carried out under the maximum likelihood
(ML) criterion. In the present study, a DOA was regarded as a cate-
gorical class, and a statistical model was trained for each DOA.

In the training stage, parameters of a Gaussian mixture model
(GMM) were estimated with speech utterances coming from the
corresponding DOA. A likelihood of the DOA classC, given to a
feature vectorxxxn, which was extracted from then-th speech utter-
ance, was computed as follows:

P(xxxn|MC) =
M

∑
m=1

wC
m ·N (xxxn; µµµC

m,ΣΣΣC
m) (20)

N (xxxn; µµµC
m,ΣΣΣC

m) = (2π)−
D
2 |ΣΣΣC

m|−
1
2 ·

exp

[
(xxxn−µµµC

m)T(ΣΣΣC
m)−1(xxxn−µµµC

m)
]

(21)

881



θ

2.2 m

5.9 m

Sound source

Robot

2.3 m

4.2 m

ms240=RT

1 m
θ

2.2 m

5.9 m

Sound source

Robot

2.3 m

4.2 m

ms240=RT

1 m

Figure 5: Recording environment.

whereC denotes the DOA class;mdenotes the mixture component;
M denotes the number of mixtures in GMMs;wC

m, N (·), µµµC
m, and

ΣΣΣC
m denote the mixture weight, the probabilistic distribution func-

tion, the mean vector, and the covariance matrix in them-th compo-
nent of the GMM with a DOA class ofC, respectively;MC denotes
the parameter assembly of the GMM, which includesµµµC

m, ΣΣΣC
m, and

wC
m; andD denotes the dimensionality ofxxxn.

In the classification stage, likelihoods of all DOA GMMs to a
speech utterance were computed using Equations 20 and 21. The
best matching clasŝC, which gave the highest likelihood for all
classes, was determined as the DOA of the speech utterance as fol-
lows:

Ĉ = argmax
C

[
logP(xxxn|MC)

]
(22)

5. DOA ESTIMATION EXPERIMENT

In the present study, DOA estimation systems were evaluated in
terms of their automatic DOA estimation performance, which is
based on the DOA correct, in noisy environment. The DOA cor-
rect was calculated by using a well-known formula, as follows:

DOA correct=
N−S

N
×100(%) (23)

whereN andSdenote the number of utterances we used in evalua-
tion and that of utterances misestimated in DOA, respectively.

5.1 Speech materials

Figure 5 shows the recording environment. Speech utterances were
100 phonetically-balanced isolated word sentences, which were
spoken by 10 male speakers. Each speaker uttered 10 words. The
speech data were played on the loudspeaker, and recorded by the
microphones placed on the head of the robot involved in conver-
sation, “ROBISUKE”[10]. In this recording, the distance between
the sound source and the robot was 100 cm, and the height of the
loudspeaker was 125 cm. In this experiment, 19 DOAs were radi-
ally placed every 10 degrees from -90◦ to 90 ◦ around the robot.
The speech data of 100 words were recorded for each of 19 direc-
tions. Diffuse noise was simulated as follows: noise from a large
air-conditioning machine was played on 10 loudspeakers placed
around the room. The diffuse noise recorded by the microphones

Table 1: Setup of feature extraction.
sampling frequency 16 kHz
frame length 128 ms
frame shift 32 ms
analysis window Hamming window
number of filter-banks 24
analysis range of frequencies1500–6000 Hz
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Figure 6: DOA corrects as a function of SNRs, averaged over all
DOAs.

on the robot head was then superposed on the word utterances so
that the SNR of the word utterance to the diffuse noise would be -5,
0, 5, 10, and 15 dB.

5.2 Experimental condition

Experimental conditions of feature extraction is shown in Table 1.
In this case, 96-dimensional feature parameters were extracted be-
cause each ofN1(ω), N2(ω), N3(ω), andN4(ω) was analyzed with
24-channel filter-banks.

A statistical model for each DOA was represented by a 2-
mixture Gaussian distribution with diagonal covariances. Evalu-
ation was carried out by 10-fold cross-validation tests: 90 words
(spoken by nine male speakers) were used for training the DOA
model, and the remaining 10 words (spoken by one male speaker)
were used in evaluation, for each DOA. As a result, a total of 100
words were used in the evaluation. It should be noted that this ex-
periment was conducted under the “open” conditions in terms of
speakers and vocabularies, i.e., both the speakers and vocabularies
used in the evaluation were different from those used for training
the models in each fold.

5.3 Experimental result

Figure 6 shows DOA corrects of the proposed method, averaged
over all DOAs, as a function of SNRs of speech utterances to diffuse
noise. In this figure, “clean” denotes the quiet environment where
only the speech utterances are observed. Figure 7 shows DOA cor-
rects for each DOA in the cases of SNRs of -5, 0, and 5 dB. In
this experiment, we arbitrarily determined the microphone spacings
(i.e., 4 cm in a diagonal position), the number of filter-bank chan-
nels used in feature extraction (i.e., 24), the analysis range of fre-
quencies (i.e., 1500–6000 Hz), and the number of mixtures in DOA
models (i.e., 2) so that the best performance could be achieved.

Figure 6 shows that the proposed method can estimate DOAs
precisely under the noisy condition: the proposed method achieved
DOA corrects of 100% when diffuse noise was observed at higher
SNRs than 10 dB, a DOA correct of approximately 99% at a SNR
of 0 dB, and a DOA correct of approximately 93% even at a SNR
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of -5 dB.
As shown in Figure 7, the performances of DOA estimation

were degraded in the DOAs of -60◦, 0◦, and 60◦: the sound sources
of the diffuse noise (i.e., loudspeakers) exist in around those DOAs.
In order to improve the performances, we can carry out adaptation
of DOA models to noise. The DOA features we used are suitable
for such adaptation, which should be carried out with few speech
utterances, because the proposed DOA features are free from sound
source spectra.

In contrast, the performance of the CSP-based method was eval-
uated using the microphone observations of Mic-2 and Mic-4 under
the assumption of the near-field[8]: this method gave a DOA cor-
rect of approximately 26% at most even in the quiet environment.
Therefore, phase differences cannot be estimated precisely, when
the microphone spacings are small and the reflections and diffrac-
tions induced by the robot occur around the microphones.

6. CONCLUSION

We proposed a new DOA estimation method that does not need
estimation of strict HRTFs, using the compact and light-weighted
MEMS microphones, which were suitable for autonomous mobile
robots. In the proposed method, statistical pattern recognition was
carried out using normalized spectral amplitudes as DOA features.
These features were irrespective of sound sources, and could cope
with the reflections and diffractions induced by the robot naturally.
The experimental results in the presence of diffuse noise showed
the effectiveness of the proposed method: it achieved the DOA cor-
rects over 99% when the SNRs were higher than 0 dB, and a DOA
correct of approximately 93% at a SNR of -5 dB.
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