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ABSTRACT 

A novel Constraint Adaptive Natural Gradient Algorithm 

(CANA) is proposed based on the Natural Gradient tech-

nique,  which is  capable of rapidly adjusting the response of 

an array of sensors to a signal coming from Direction of 

Interest (DoI) and suppressing noises coming from other 

directions. Constrained optimization techniques have been 

extended to enhance the look direction signal in the pres-

ence of interference using adaptive natural gradient tech-

niques. Mathematical analysis and realistic MATLAB simu-

lations are developed to confirm the fast convergence of the 

adaptive weights, and the suitability of algorithm for opera-

tions in adverse environments. 

1. INTRODUCTION 

This paper introduces a novel algorithm for Adaptive Array 

Processing. Most often adaptive processing involves mini-

mization of specific cost functions [1,2]. The practical 

minimization of these cost functions is not trivial as they are 

generally associated with manifolds with non linear optimi-

zation surfaces [3]. Working with search spaces that carry 

nonlinear manifolds introduces certain challenges in the 

algorithm implementation [3,4].Natural gradient has been 

found useful for optimization on non linear surfaces [5]. 

Also numerical computations require that the solution set 

consists only of the isolated points in optimization domain. 

This can be served by imposing constraints [3]. In a 

constraint optimization problem the algorithm has to 

constantly meat the imposed conditions while maximizing or 

minimizing the cost function [6]. Beamforming incorporat-

ing sensor arrays has led to important applications in radio 

communications, sonar, radar, acoustics, and many other 

areas [1].As an instance, in a cellular system, the desired and 

the interfering signals originate from different spatial loca-

tions. This spatial separation is exploited by a beam former 

that can be regarded as a spatial filter separating the desired 

signal from the interference [6]. By incorporating adaptive 

algorithms, the beam former can suppress interferences 

coming from the directions that are different from the de-

sired direction [2]. Capon and Frost beam former are among 

the basic applications of constraint beam forming [8]. The 

demand of ever increasing truly personal communications 

 

  

relying upon the smart antenna systems and advent of cogni-

tive antenna [9] has increased the need of fast and accurate 

adaptive algorithms capable of meeting the diverse chal-

lenges. To cope with the needs of access throughput and 

always on requirement, the spatial dimension provided by 

Multi-Antenna terminals gives rise to multiple additional 

network resources enabled by the versatile efficient adaptive 

systems [10]. Similarly, the antenna arrays are widely used 

in modern radars to meet the challenges of increased range 

coverage, target identification, trajectory, faster data rates 

and multi beam applications [11].  Due to increased poten-

tial of co-channel interference, the popular user area applica-

tions such as Pico cells demand efficient beamforming sys-

tems. The reaction time is also a compelling factor in devel-

opment of the more effective and efficient systems. In a 

similar manner, the ever increasing air traffic, demands ac-

curate beamformers with good convergence characteristics 

and less reaction time to direct flights.  

 

The proposed algorithm offers an answer to these chal-

lenges. In the following section, the structural development 

of the proposed algorithm is provided, complemented by 

convergence analysis and realistic MATLAB simulations to 

verify the performance of the algorithm. 

2. CONSTRAINT ADAPTIVE NATURAL 

GRADIENT ALGORITHM (CANA) 

Constraint optimization technique is aimed at minimizing 

the total noise power at the array output while maintaining a 

chosen frequency response in the Direction of Interest [2]. 

Knowledge of Desired Direction of Interest (DoI) is the ba-

sic information required by the algorithm. Optimization 

based upon natural gradient algorithm is employed to de-

velop the technique we call the constraint adaptive natural 

gradient algorithm.  

 

Consider a conventional narrowband adaptive array proces-

sor depicted in Figure 1. The signal from an incident source 

impinges on every element of the array. This is subsequently 

multiplied with relative weights and summed as the antenna 

array output.  The array output
n

y  can be given by the fol-

lowing relationship: 
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Figure 1: Generic adaptive array processing scheme 

 

           
T

n n ny  w x
                (1)                                   

with                         1 2 3[ ]T

n Nw w w ww                    (2) 

and                            1 2 3[ ]T

n Nx x x xx                       (3)  

Where w  is the complex weight vector and x is the incom-

ing data vector. To solve the constrained optimisation prob-

lem, we have to minimize the average output 
2[ ]nE y  with 

look direction constraint. The look direction constraint can 

be formulated as in [2] 

                                          
T

n c w f        (4) 

Where c  is the constraint vector and f  the look direction 

constraint. For a single look direction constraint, f takes the 

scalar value of 1. From equation (1) and (4) the cost problem 

can be formulated as  

                  ( )    J w
Minimize  E  T T

n n n n
  w x x w       (5) 

Subject to the constraint given in equation (4). By using 

Lagrangian method the constraint cost function can then be 

defined as 

       ( ) ( 1)T T

c n n n nJ   w w R w cw              (6) 

Where R is the correlation matrix of the input data vector 

x and λ is the Lagrange multiplier. Minimizing of the cost 

function is to set its gradient equal to zero. Amari et al. pro-

posed that the natural gradient of a cost function J can be 

written as in [5].   

                                 
~

1

( ) ( )J J  w wG                         (7) 

Where wJ and G  are the conventional gradient of the cost 

function and the Riemannian metric respectively. The con-

ventional gradient for the constraint problem under discus-

sion is described in [2] and is given by 

                             ( )c n nJ   w R w c                       (8) 

While formulating a natural gradient algorithm on abstract 

Riemannian space the first and the foremost challenge is the 

calculation of Riemannian metric tensor. This metric tensor 

is basically the continuous dot product on the tangent space 

to the abstract Riemannian surface under observation and 

carries the curvature information of the surface to be opti-

mized. For flat surfaces and optimization spaces this metric 

G=I, the identity matrix. From equation (6) the constraint 

cost function can be derived as follows.    

                       
( ) ( ) ( 1)T

cJ J   w w c w        (9) 

          ( ) ( ) ( )c c cJ J J  w w w w
                   (10) 

Where ( )cJ w
 is the constraint cost function, as defined in 

equation (6). The natural gradient is related to the L2 norm 

of the increment in the weight values, hence 

                       
2

( ) ( )c cJ J    w w w w             (11)   

But     
( ) ( ) [ ( ) 1]T

cJ J     w w w w c w w       (12) 

Therefore equation (10) transforms to 

 
( ) ( ) ( )[ ( ) 1] ( 1)T T

cJ J J        w w w wc w w c w  

                                                                                           (13) 

This implies that 

              
( ) ( ) ( )[ ]T

cJ J J    w w w wc w  (14)                     

Since we have set 
2

( )cJ   w w    then 

     
2

( ) ( ) ( )( )T

cJ J J        w w w wc w w  (15) 

or  

            ( ) ( ) ( ) ( )T TJ       w c w w G w
           (16)

 

Where ε, an arbitrary small number, can be absorbed in the 

step size μ.  From equation (16) we deduce that 

                             
( )J




   


w
c G w

w
                    (17) 

This implies that 

                         
( )1 1( )

J
 


  



w
w G G c

w
    (18) 

From Eq. (18), the iterative weight update equation can be 

established as 

1n n n   w w w                           (19) 

Using update rule formulated equation in (19) and employ-

ing the mathematical operations (given in the Appendix) we 

lead to following novel Constraint Adaptive Natural Gradi-

ent Algorithm (CANA) for adaptive array processing. 

                  
1

1

( )
[ ( ))]

n n

n

J







  



w
w P w G k

w
    (20)                                           

where                           

1

1
[ ]

T

T




 

G cc
P I

c G c
 

and                             

1

1T






G c
k

c G c
 

The idempotent property of matrix P as given in appendix, 

confirms the suitability of matrix P to be the true projection 

operator for our proposed Constraint Adaptive Natural Gra-

dient Algorithm (CANA).  Note that the Riemannian metrics 

should not be confused with linear metrics. A metric is an 

abstraction of the notion of distance, whereas a Riemannian 

metric is an inner product on continuous tangent spaces. 

However a Riemannian metric induces a distance, the Rie-

mannian distance [4, 5].The Riemannian metric for this type 
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Figure 2: Comparison of convergence characteristics be-

tween CANA and conventional gradient based algorithm  

 

of cost function has been proposed in literature [5]. But for 

our computations, we have slightly modified the metric to 

introduce the regularisation parameter ν. Thus we use the 

metric 

                       [ (1 ) ]T

n nv v  G I w w                         (21) 

The functionality of ν is to improve the rank deficiency of the 

metric, due to the generic structure of
T

n nw w . Equation (7) 

reduces to conventional beamformer for G=I. Note that ac-

cording to Woodbury Identity, inverse of G does not neces-

sitate matrix inversion and it is given as 

  
1 [ ]

1

T

n n
T

n n

v

v
  



w w
G I

w w
                  (22) 

This implies that computing inverse of G requires O (n
2
) to 

compute 
T

n nw w at each stage. Thus while the implementa-

tion of equation (20) is computationally expensive the con-

vergence performance and accuracy, which far exceeds the 

performance of the conventional beamformer , makes the 

proposed algorithm very attractive in terms of implementa-

tions. 

3. CONVERGENCE ANALYSIS 

On the basis of equation (20) we can define a bias vector as 

follows 

1 1

o

n n  e w w        (23) 

Where 
o

w is optimum weight vector as given by Frost [2] in 

his famous solution for Linearly Constrained Adaptive Array 

Processing. From the equation (23) we can deduce that 

 
o

n n w e w                                    (24) 

For the particular cost function of (6), the equation (17) can 

be written as  

                
1

1 [ )]n n 

   w P I G R w k      (25) 

The steady state solution of equation (25) after the gradient 

part has vanished, corresponds to 

[ ] o k I P w                    (26) 

From equations (23-26) 

Figure 3: CANA and CLMS Array responses to look direc-

tion of 30
o
 signal. Note nulls in two interfering directions of 

15
o
 and 75

o
. Sensor Noise Power= 10 Interference Power = 

look direction Signal Power=1 

               

                   
  

 

Figure 4: CANA Array response to look direction of 30
o
 

with 6 interferers at 0
 o
,15

o
 , 55

o
, 70

o
 , 235

o
 and 330

o
  

 

For optimal solution the gradient term must be zero. There-

fore, 

 
1 0o PG Rw                                  (28) 

Therefore equation (24) reduces to  

           
1

1 [ ]n n 

  e P I G R e                      (29) 

The idempotent property of projection matrix allows us to 

manipulate equation (29) by pre-multiplying it by P. We get 

the same left hand side of equation (29), which means that 

                  
1 1&n n n n

  Pe e G Re G RPe  

With these realizations we can write equation (29) as 

                   
1

1 [ ]n n 

  e P I PG RP e   or 

                    
1 1

1 [ ]n

n o  

  e I PG RP e                    (30) 

Where oe is the initial value. Therefore the convergence 

condition is given by      

                                   
1

0


                                    (31)
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Figure 5: Comparison of weights calculated by Natural and 

conventional gradient based algorithms 

  

In equation (31) max is the largest Eigen value of the  

Square matrix 
1

PG RP . It may be noted that the trace 
1

max[ ] M
PG RP  where M is the dimension of ma-

trix
1

PG RP . In this scenario a suitable choice can be  

                       
1

0
[ ]

M

Trace



  

PG RP
                   (32) 

4. SIMULATIONS  

An 8 element uniformly spaced antenna array was simulated 

with CANA. The iterative constraint adaptive algorithm 

using conventional gradient (CLMS) was also simulated for 

comparison. We chose the convergence step size μ=0.01 and 

regularization parameter ν =0.09. Input correlation matrix 

was taken to be of Toeplitz structure. Figure 2 shows the 

convergence of the cost function to the optimum value for 

this particular case. The Constraint natural gradient attains 

the optimum value very rapidly, and converges in about 

forty steps, while the conventional gradient based constraint 

optimization commonly known as Constrained LMS 

(CLMS) takes more than 200 steps to converge to the opti-

mum value. Figure 3 describes CANA and CLMS array re-

sponses to look direction (30
o
) signal. Note that CANA has 

deeper nulls in two interfering directions of 15
o
 and 75

o
.The 

natural nulls of CANA and side lobe structure is better than 

the CLMS by at least 7dB. Figure 4 depicts the hostile envi-

ronment of 6 interfering sources managed by CANA by pro-

viding nulls in the direction of interferers. Figure 5 is a 

comparison between the array weights for each eight sensors 

calculated by CANA and CLMS algorithms in steady state. 

The CANA weights for each of the sensor are exactly in 

agreement with the optimal weights obtained as the Wiener 

solution, while CLMS weights for each sensor vary widely. 

Along with quick convergence to the optimum values, it’s a 

representation of how accurate is the proposed algorithm 

(CANA). The accuracy of CANA up to the three decimal 

places is phenomenal depiction of exactitude and correct-

ness. Figure 6 shows interesting relationship between 

Figure 6: Relation between rate of convergence and regulari-

sation parameter ν 

 

convergence rate and the value of ν .The optimum value for 

this particular set of simulations was found to be 0.09 result-

ing in the algorithm converging to the optimum value in 

very few iterations. As we increase the value ν, the algo-

rithm takes a longer time to converge to the optimum value. 

At ν =1 the value of G  reduces to Identity matrix and the 

algorithm becomes the constrained LMS (CLMS) solution. 

Interestingly values of ν less than 0.09 are out of bound for 

this particular case as the system becomes unstable for lower 

values. Figure 7 depicts the relationship between values of ν 

and the step size μ, obtained by using equation (32). Inter-

pretation of this relationship is significant for the perform-

ance of CANA. The figure gives an account of limitation of 

choice of step size and its relationship to the particular regu-

larization parameter ν. In fact it puts a lower bound on the 

values of step size μ as represented in the Figure 6. 

5. CONCLUSION 

This paper has presented a novel technique for constraint 

adaptive algorithm based upon the natural gradient. This 

technique provides more uniform performance than those 

based upon ordinary stochastic gradients, yet is simple to 

implement. It may be noted that the rate of convergence of 

 

 
Figure 7 Step lengths vs. regularization parameter ν  
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constraint adaptive natural gradient algorithm (CANA) is 

very sensitive to the value of ν. In fact there are very few  

choices of ν along with particular combination of the step 

size μ. Along with the ability of natural gradient algorithm to 

follow the exact surface of the optimization space, self cor-

recting feature of constraint optimization ensures that the 

algorithm rapidly converges to steady optimum state, even 

for a quadratic function for which ordinary gradient based 

techniques e.g. LMS are considered as bench mark. So for a 

reasonable range of step size and regularization parameter 

the CANA algorithm outperforms other techniques. 

6. APPENDIX 

Following the procedure given equation (19) 

 

              
( )1 1

1 ( ( ) )n n

n

J
  




  



w
w w G G c

w
          (I) 

            
( )1 1

1 ( ( ))n n

n

J
  




  



w
w w G G c

w
                          

                                                                              (II) 

However we know that from the constraint equation (4) that 

1 1T

n c w ,thus pre Multiplying equation (II) with c
T
 leads 

( )1 1

11 ( ) [ ]T T T T

n n

n

J
  




   



w
c w c w c G c G c

w
           

                                            (III) 

Substituting this value in equation (II) we get 

         

( )1

1

1( )1
1

( )

[1 ( )]
[ ]

n n

n

T T
Tn

n

J

J













  




 



w

w

w w G
w

G cc w c G
c G cw

 

or                                                                                         (IV) 

    

1( )1 1
11

1

1

( )
( ) [ ( )]

[ ]

[ ]

T
Tn n n

n n

T

JJ
G 


 








   

 



w G cw w c w G
c G cw w

G c
c G c

w

          

                                                                                              (V)

 

1 1
( ) ( )1 1

1 11
[ ( )] [ ( )]

[ ] [ ]

T

T Tn n n

n n

J J
 

 
 

 

 
    

 

w wG cc G cw w G w G
c G c c G cw w

 

                  (VI) 

1 1
( )1

1 11
[ ][ ( )]

T

T Tn n

n

J


 


 


   



wG cc G cw I w G
c G c c G cw

 (VII) 

                

( )1

1
[ ( )]

n n

n

J







  



w
w P w G k

w
              (VIII) 

                         While 
1

1T



G ck
c G c

  and                                                                                 

                           

1

1[ ]
T

T



 G ccP I
c G c

 

Now let’s check the idempotent property of projection ma-

trix by projecting it onto itself, which is by multiplying it 

with itself. Hence 

              1 1

1 1[ ][ ]
T T

T T

 

 



 

PP

G cc G ccI I
c G c c G c

 

   (IX) 

This further implies left hand side equal to    
1 11

1 1 2

( )
[ 2 ]

( )

T TT

T T

 

   
G c c G c cG ccI

c G c c G c
(X) 

 and thus P  is given as under 

                          
1

1[ ]
T

T



 G ccP I
c G c

                     (XI) 
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