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         ABSTRACT

This paper explores a new measure, based on the 
copula density functions, for image registration, 
especially for the multimodal image registration. 
The measure relies on determining the mutual 
information between images taken at different 
times from different viewpoints or by different 
sensors. The process aims to find the optimal 
spatial correspondence that offers maximal 
dependence between the grey levels of the images 
when they are correctly aligned. Misalignment 
results in a decrease in the measure. To this effect, 
this paper focuses on improving the estimation of 
mutual information. It is shown that copulas form 
an integral definition of mutual information, and 
lead to robust estimation tools. The paper includes 
new results on generalised divergence measures, 
including the Kullback-Liebler divergence, 
Kolomgorov. Tsallis , Iα, and Renyi measures 
amongst others. These are expressed in terms of 
copula density functions. Results are presented on 
the registration of two classes of images, using the 
Clayton Copula to estimate the divergence 
between the images, and their performance 
evaluated.  

1.0 Introduction

Issues of image registration arise in a number of 
areas, where information needs to be extracted 
from a multiplicity of scenes. The requirement to 
identify identical or quasi-identical elements in 
several images (or scenes) forms an important 
feature in the analysis and abstraction of 
information from data. Examples of such 
requirements arise in area such as medical 
imaging, non-destructive evaluation of faults, or 
remote sensing, amongst others. For instance there
is a need to assess patient response to medication 
from tomographic images over a longitudinal
treatment; study of the progression of a defect or 
fault from ultrasonic images taken at different 
intervals; erosion of coastline or forestry or land 

usage from satellite images or SAR data; and 
many more. In all the above cases, there is as need 
for comparing images, while recognising static or 
common feature, hence the need for image 
registration.

The problem of image registration may be 
encapsulated in the statement that multimodal 
image registration is a process of determining the 
optimal spatial correspondence between images 
that are taken at different times from different 
viewpoints or by different sensors.

To effect such registration, conventional 
techniques have relied upon the use of measures 
such as correlation techniques or Fourier and
related methods. However in the nineties there was 
a paradigm shift in multimodality image 
registration, where intensity based algorithms were 
developed that exploited mutual information [1--
4]. These were based on the assumption that there 
is maximal dependence between the grey values of 
the images when they are correctly aligned, 
misalignment was shown to result in a decrease in 
the measure, thus techniques were developed for 
improving the estimation of mutual information, as 
a precursor to image registration.

The well known definition for mutual information 
between two random variables X and Y is given by

( , )
( , ) ( , ) log

( ) ( )

p x y
I X Y p x y dxdy

q x q y
           (1)

where p(x,y) is the joint probability density 
function of the variables (X,Y), and q(x), q(y) are 
the marginal densities of X and Y respectively.

According to the definition of mutual information, 
a key requirement is to estimate the joint density 
function for the images. There are two approaches 
to this estimation problem that may be classified as 
parametric methods or non-parametric methods. In 
the parametric method, a given form for the joint 
density function such as bi-variate Gaussian, bi-
variate Gamma distribution [5] is assumed, and 
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related parameters are estimated from the given set 
of finite number of data points, and the mutual 
information I(X,Y), is evaluated from this. 
However, the image distributions are rarely  
Gaussian nor Gamma distributed, and even have 
the different types of marginal distribution.

For non-parametric approaches, well-known 
methods rely on histogram and K Nearest 
Neighbor and Kernel (KNN) density estimation 
[6]. The main drawback of histogram method is 
that it requires a large amount of data for reliable 
estimates, and the KNN produces estimates with 
very heavy tails; and can have discontinuities.  The
resulting density is not a true probability density 
since its integral over all the sample space may 
diverge.

Copulas [7] offer alternative robust parametric 
techniques for the modeling of the dependency 
structure between random variables and hence 
within the observed data. Since copulas can model 
any joint multidimensional probability density 
function only from marginal density functions, 
hence are candidates for the evaluation of mutual 
information from observed data.  

This paper will briefly introduce Copula functions, 
and their properties; extend their applications to a 
range of Divergence measures that include I(X,Y)
as a special case, and then illustrate the results on 
real data to prove that the proposed  copula 
approach provides robust estimates of the joint 
density function and mutual information, and as 
such offers a new technique for image registration.

2.0 Background to copulas

Copulas represent a mathematical relationship 
between the joint distribution and the marginal 
distribution of random variables. For two random 
variables X and Y, their joint probability 
distribution FXY(x, y), according to Sklar [7], is 
given by:

FXY(x,y) = C(FX(x), FY(y)) =C(u, v)
where C(u,v) is the copula function,  u=FX(x), 
v=FY(y) are marginal probability distributions, 
FXY(x,y) is the joint distribution, so the copula 
function be defined by:
       1 1( , ) ( ( ), ( ))XY X YC u v F F u F v 
Furthermore, the copula density is given by[8]:

22 ( ( ), ( ))( , )
( , ) X YC F x F yC u v

c u v
u v u v


 

   

          
2 ( , ) ( , )

( ) ( ) ( ) ( )
XY XY

X Y X Y

F x y f x y

f x f y x y f x f y


 

 
where c(u,v) is the copula density function, 
fXY(x,y) is the joint density function of x and y and 
fX(x), fY(y) are the marginal density function 
respectively.

3.0 Mutual information, Divergence and 
generalised measures   

Mutual information as given in Eq.(1) is a measure 
of the distance between the joint density and the 
product of the marginal densities of two variables, 
and is known as a particular case of the
‘divergence measure’ call the Kullback-Leibler 
Divergence [9].

In recent years a number of information theoretic 
similarity measures have been identified [4] [10] 
[11]. These are based on generalised divergence 
measures and are known to offer improved 
accuracy, robustness and speedy convergence for 
image registration [12].

Using the definition of copula density functions as 
given above, it may be shown that the Kullback 
Liebler Divergence may be transformed into [13]

1 1

0 0

( , ) ( , ) log( ( , ))KLD I X Y c u v c u v dudv     (2)

It may be seen that this expression is a much 
simpler manifestation that Eq. (1), and is 
completely defined in terms of the copula density 
function {c(u,v)}. It will be shown later that it 
offers ease of computation.

Other measures that have attracted recent attention 
are the Renyi divergence, Tsallis divergence, Iα
divergence and Bhattacharya and Kolmogorov 
distances. Details of these may be found in [12]. It 
is interesting to note that each of these measures 
lends itself to definitions in terms of copula 
density functions.

Indeed, as shown below, the copula functions offer
a more compact definition for the Generalised 
divergences, and thus provide an easier alternative 
for the computation of the mutual information of 
Divergence measures.

3.1 Generalised Divergence Measures

There are two types of Generalised Divergences
[14]:

a. Czisar Divergence, and
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b. Renyi Divergence

a. For Czisar Divergence, the copulas function 
may be used to derive a simpler and more compact 
definition, as

1 1

0 0

( ( , )D c u v dudv                         (3)

Thus when ( ) logx x x  , Eq.(3)  yields the 

Kullback –Liebler divergence measure. Similarly,

when 
1

( )
( 1)

x x
x

  


  



, we obtain the 

Tsallis Divergence, while when

1
( )

( 1)

x x
x

  
 
  




, Eq.(3) yields the Iα

Divergence.

b.  For Renyi Divergence family, we have the 
generalized expression:

1 1
1

0 0

log( ( ( , ) ( ( , ) ))D c u v c u v dudv         (4)

For 1( ) rx x  , Eq.(4) yields the Renyi 

divergence included in Table 1, while  1 / 2,r 
give  the Bhattacharya divergence measure. Note 
that using L’Hopital Rule, the Renyi divergence 
reduces to the Kullback Liebler divergence as
Table 1 gives an equivalence for the different 
divergence measures in terms of their density 
functions and related copula density functions. In 
all cases the measures may be computed from the 
copula density function alone.

To test the properties of the Divergence measures, 
the Clayton Copula density function was used to 
compute the various divergence measures [12].

The Clayton copula distribution is defined as:
1

( , ) ( 1)C u v u v  
   

and the Clayton copula density function is given 
by

1
21 1( , ) (1 ) ( 1 )c u v u v u v    
             (5)

where copula parameter (0 ).   The Clayton 

copula parameter θ can be related to Kendall’s tau 
rank correlation [7] as:   

        
2

,

[0,1]

4 ( , ) ( , ) 1
2X Y C u v dC u v




  


The Kendall tau rank correlation coefficient is a 
non-parametric statistic that is used to measure the 
degree of correspondence between two rankings
and for assessing the significance of this 
correspondence [7].

For the Clayton copula density function,
relationship between mutual information and 
Kendall rank correlation (τ) for different 
divergence measures are given in Figure 1. Note 
the convex relationship and the differences in 
performance between the various divergence 
measures.

Name                    Divergence             By Copulas
Kullback -
Leibler

( , )
( , ) log(

( ) ( )

p x y
p x y dxdy

q x q y 2[0,1]

( , ) log[ ( , )]c u v c u v dudv

Kolmogorov | ( , ) ( ) ( ) |p x y q x q y dxdy
2[0,1]

| ( , ) 1 |c u v dudv
Tsallis

1 1

1 ( , )
( 1)

1 ( ) ( )

p x y
dxdy

q x q y



   


 
2[0,1]

1
( ( , ) 1)

( 1)
c u v dudv




 

I 1 1

1 ( , )
( 1)

( 1) ( ) ( )

p x y
dxdy

q x q y



    


 
2[0,1]

1
( ( , ) 1)

( 1)
c u v dudv

 


 
Renyi

1 1

1 ( , )
(log )

( 1) ( ) ( )

r

r r

p x y
dxdy

r q x q y  
2[0,1]

1
log ( , )

( 1)
rc u v dudv

r  
Bhattcharyaa 2log ( , ) ( ) ( )p x y q x q y dxdy 

2[0,1]

2 log ( , )c u v dudv 
                                                           Table 1

                         Divergence by copulas
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Figure 1(Mutual information vs Kendall rank 
correlation, where the parameter for Tsallis, Iα are 
1.2 and for Renyi divergence is 1.5).

4.0 Image registration using copulas

To test the effectiveness of using copulas for 
image registration, a number of experiments were 
carried out on two difference classes of images –
(i) Digital aerial photograph, and (ii) medical 
magnetic resonance images. Two images from the 
same class were employed - one the original image 
and the second a rotated version of the original 
with added 2% salt and pepper noise.  The 
objective was to determine the alignment 
(registration) between the images by computing 
the different divergence measures, using the 
Clayton copula function. The alignment is 
achieved for the value of the rotated angle when 
the divergences reach a maximum. 

(i) Image registration for aerial images.

        
         Figure 2 (a)                  Figure 2 (b)
    Reference Image            Floating Image

      
Figure 2 (c)                      Figure 2 (d)

Registered image  Figure 2 (c) overlaid on (a)

                          Figure 2 (e)
The aerial images in Figure 2 (a) and 2 (b) are 
available from the Matlab website [15], taken at
different times and from different viewpoints. 
Using the Clayton copula model, the copula 
parameter θ is estimated for the two images, 
drawing upon the method of Canonical Maximum 
Likelihood (CML) as proposed in [16]. Fig 2(c) is 
the registered image computed from Figure 2(b). 
Figure 2(d) is generated by overlaying a 
semitransparent version of the registered image 
Figure 2(c) on the Figure 2(a). The Divergence 
Measures given in Table 1 were calculated with 
{c(u,v)} as given in Eq (3), and were computed for 
the Tsallis, Iα (parameter α =1.2) and Renyi 
families (r=1.5). The computation values of the 
divergence for different rotational angles are given 
in Figure 2 (e). It may be seen that all the
Divergence values peaks when the rotation angle is 
12.10 clockwise – (the correct answer).

(ii) Image registration for magnetic resonance 
images.
The Magnetic resonance images were obtained 
from [17] and are used to determine image 
registration using the Clayton copulas. Figure 3(a) 
is the original image, while Figure 3(b) is a rotated 
version of Figure 3(a) with added 2% “salt and 
pepper” noise.  Figure 3(c) is the registered image 
from (b).  Figure 3(d) is generated in a similar
measure to Figure 2(d) by overlaying the 
registered image Figure 2(c) on Figure 2(a).

        
            Figure 3 (a)               Figure 3 (b)

Reference image          Floating image
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         Figure 3 (c)                Figure 3 (d)
  Registered image     Figure (c) overlaid on (a)

The Divergences were computed by using Clayton 
copula. Here the parameter α =1.2 was used for 
Tsallis, Iα divergences, while Renyi divergence for 
r=1.5 was computed. As may be seen from Figure 
3(e), the Divergences reach a single maximum 
when the rotation angle is 9.250 clockwise, and all 
the Divergence measures are very similar.   

                 Figure 3 (e)

5.0 Conclusions

In this paper image registration techniques based 
on copula functions has been presented.  Copulas 
have been used to calculate a number of 
divergences for image registration. The mutual 
information computed, and used to compare 
several divergence measures. These are then 
evaluated using the Clayton copula and applied to 
two sets of images to illustrate their efficacy in 
image registration. It is shown that the copula 
measure offers a more robust way to register 
images.
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