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ABSTRACT

This paper presents a new method to draw particles for
the particle filter in the case of large state noise. The
standard bootstrap filter draw particles randomly from
the prior density which does not use the latest infor-
mation of the observation. Some improvements consist
in using extended Kalman filter or unscented Kalman
filter to produce the importance distribution in order
to move the particles from the domain of low likeli-
hood to the domain of high likelihood by using the lat-
est information of the observation. The performances
of these methods vary with the structure of the mod-
els. We propose a modified bootstrap filter which uses a
new method to draw the particles. Our method outper-
forms the bootstrap filter with the same computational
complexity. The effectiveness of the proposed filter is
demonstrated through numerical examples.

1. INTRODUCTION

Estimation of the hidden state from noisy observations
is an important topic in control theory and signal pro-
cessing. Many works have been devoted to this subject
since the famous Kalman filter which is the optimal so-
lution for a linear model with Gaussian noises. For a
nonlinear model, the equations of the optimal (nonlin-
ear) filter have been developed since the middle of the
1960s, but unfortunately the involved integrals are in-
tractable. Many suboptimal nonlinear filters have been
introduced in the literature, see e.g. [1], [16], [17], [20]
and [4]. The extended Kalman filter (EKF) proposed by
[10] and [6], the unscented Kalman filter (UKF) intro-
duced by [11], and the particle filter (PF) are well-known
nonlinear filters among others.

The simplest way to approximate a nonlinear state
space model is to replace the state transition and the
measurement equations by Taylor series expansions.
The EKF uses first-order Taylor series expansions, and
then uses the Kalman filter to estimate the state. Al-
though the state estimation given by the EKF is biased,
this method is still widely used because of its simpleness.

The UKF uses several so called sigma points to cal-
culate recursively the means and covariances used in the
Kalman filter, see [18]. At first glance, UKF and EKF
are different. However, both filters use the Gaussian dis-
tribution to approximate the true posterior distribution.
Essentially, EKF and UKF are two different implemen-
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tations of the linear update equation in the Kalman fil-
ter. When the variance of the observation noise is small,
the UKF provides generally a more accurate estimation
of the state than the EKF. When the variance of the ob-
servation noise increases, the performances of the UKF
and the EKF become similar.

Up to now, the most successful nonlinear filter is the
PF which can be regarded as an approximation of a re-
cursive Bayesian filter. The principle of the PF is to
implement a recursive Bayesian filter by Monte Carlo
simulations. The densities involved in the Bayesian fil-
ter are represented by a set of random samples with
associated weights.

The PF has been used successfully in many domains
such as guidance, signal and image processing and com-
puter vision, but its performance depends heavily on
the choice of the so called importance distribution (ID).
Many works have been done to choose the ID, but no
general rule seems to exist. The most popular choice
is to use the transition prior function as the ID, see
[8]. This method does not use the latest information of
the observation. To overcome this problem, [5] and [19]
suggested respectively to use the EKF and the UKF to
produce the ID. These methods may provide a good ap-
proximation of the true posterior distribution, but they
depend on the structure of the model. In this paper, a
new method which uses likelihood to choose the parti-
cles from the ID is introduced and compared with the
standard PF.

The remainder of this paper is organized as follows.
The principle of the PF is introduced in Section 2. In
Section 3, we present some parametric methods to pro-
duce the ID. In Section 4, a modified bootstrap fil-
ter (MBF) is proposed. Then, the effectiveness of our
method is illustrated by numerical examples in Section
5. Finally, some conclusions are given in Section 6.

2. PARTICLE FILTER

Consider a dynamic nonlinear discrete time system de-
scribed by a state-space model

ry = fw1) + ug, (1)
Yy = h(.’L't) + Vt, (2)

where x; is the hidden state, y; is the observation, and
ug, vy are the state and observation noises. Both noises
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are independent and identically distributed sequences
and are mutually independent. When we write (1),
we always assume implicitly that u; is independent of
{x¢{—,k > 1}. This condition is natural when the pro-
cess (x;) is generated from the model in the increasing
time order. Then, x; is a homogeneous Markov chain,
i.e., the conditional probability density of x; given the
past states zg.t—1 = (xg,...,2¢—1) depends only on x;_1
through the transition density p(z¢|z;—1), and the condi-
tional probability density of y; given the states zy.; and
the past observations y;.;_1 depends only on z; through
the conditional likelihood p(y:|x:). We further assume
that the initial state x( is distributed according to a
density function p(x).

The objective of filtering is to estimate the poste-
rior density of the state given the past observations
p(z¢|y1.t). A recursive update of the posterior den-
sity as new observations arrive is given by the recursive
Bayesian filter defined by

P(@e|y1:e—1) :/p($t|3«"t—1)p($t—1\ylzt—l)dl‘t—l, (3)

X €T Y
p(@elyre) = Pz p(e|y1:e 1),
p(yt|y1:t—1)

(4)

where the conditional density p(y:|y1.+—1) can be calcu-
lated by

P(elyra_t) = / P(yelae)p(@ilyre—)dae.

The difficulty to implement the recursive Bayesian filter
is that the integrals are intractable, except for a linear
Gaussian system in which case the closed-form solution
of the integral equations is the well known Kalman filter
introduced by [12].

The PF uses Monte Carlo methods to calculate the
integrals. The posterior density p(xo.|y1.¢) is repre-
sented by a set of N random samples z{, (particles)
drawn from p(2o.t|y1.+) with associated normalized pos-
itive weights wi (3°,w! = 1). The posterior density is
approximated by the discrete distribution, Zf\; wédggé_t,
and the conditional expectation of any integrable func-
tion g(xo.t) is approximated by the finite sum,

N . .
E[g(xlzt”yl:t} = /g(xlzt)p(xlzt|y1:t)dm1:t ~ Zw;g(let)
i=1

In general, it is difficult to sample directly from the
full posterior density. To overcome this difficulty, the
method of importance sampling is used, see e.g. [15].
The particles z%,, are drawn from an easy sampling ID
q(z1:t|y1:+) and we define the non-normalized weights as

wi _ p(mi:t|y1:t) )
q(le:t|y1:t)
The ID is chosen to factorize such that

(I($1zt|y1:t) = Q($t|$t71, yt)Q(xlztfl |y1:t71)7

in order that the weights can be updated sequentially as

% i

pyelep)p(aile_ ;)
Wy X wy_q .

q(@f|z)_y, i)

()

We can implement recursively a basic sequential im-
portance sampling (SIS) PF in the following steps, see
2 |
1. Sample the particles =} ~ q(z¢|z}_1, yt);

2. Update the weights according to (5).

An important problem of the PF is the degener-
acy problem. After a few iterations, only few particles
have non negligible weights and the estimation may be-
come unreliable. The sampling importance resampling
filter has been developed by [8] to overcome this draw-
back. The objective of resampling is to eliminate sam-
ples with low importance weights and multiply samples
with high importance weights. Several methods of re-
sampling have been developed, such as the multinomial
resampling, the residual resampling and the systematic
resampling. In this paper, we use the residual resam-

pling.

3. THE STATE-OF-ART TO PRODUCE THE
IMPORTANCE DISTRIBUTION

Choosing the ID is one of the key problems in
the PF. The optimal ID satisfies q(x¢|xo.t—1,¥1.¢) =
p(z¢|zi—1,y:) and fully exploits the information in both
x4—1 and yq, see e.g. [5]. In practice, this distribution is
unknown for a general nonlinear model and therefore, it
is impossible to sample from it. The second choice of ID
is the transition density for its easiness to sample and
leads to the standard bootstrap filter (BF). This is the
most popular choice, but since p(x¢|z;—1) does not use
the latest information of y;, the performance of the BF
varies with the variance of the observation noise. When
this variance is small or the variance of the state noise
is large, the BF performs badly.

Many methods have been developed to produce an
ID which uses the latest information of y;. [5] have pro-
posed to use the method of local linearization to gen-
erate the ID. Then, EKF, UKF and Gaussian-Hermite
filters have been used by [9] to produce the ID. Since
these filters use the latest information of y;, the choice
of local linearization method may improve the perfor-
mance of the PF when the variance of the observation
noise is small. In the same vein, a Gaussian particle
filter was proposed by [13] which uses a Gaussian distri-
bution to approximate the true posterior distribution.

The auxiliary particle filter (APF) is a popular vari-
ant of the standard PF. The essential of the APF is to
reserve the most possible survival particles in the sim-
ulation. The APF uses the expectation E[z;|zt ;] to
characterize p(x;|zi_;). When the variance of the state
noise is small, this method performs very well. When
the variance of the state noise is large, the distribution
p(x¢]xt_,) could not be characterized by E[zs|z¢ ], and
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it was pointed out by [2] that the use of the APF can
degrade the performance.

Other existing nonlinear filtering techniques can be
used to produce the ID. For instance, [21] have used the
adaptive nonlinear filter proposed by [14], and [22] have
considered the nonlinear projection filter introduced by
[3]. Of course, the better the nonlinear filtering tech-
niques approximate the true posterior distribution of the
state, the better these methods perform.

These methods may perform better than the BF, but
of course they depend on the structure of the models.
In the next section, a new method is introduced to draw
particles in the PF.

4. A NEW SAMPLING METHOD FOR
PARTICLE FILTER

To improve the performance of the PF, we may either
draw more particles or use the information in y; and
let the particles move toward the region of high likeli-
hood. This is the principle used by [19], [9], [21], and
[22]. Nevertheless, these techniques are valuable only
for some specific models. Up to now, there is no algo-
rithm can outperform the BF in the general nonlinear
non Gaussian models with large state noise. The local
linearization PF works worse than the BF, because the
posterior density of the state is quite different from the
Gussian density. This is clear shown in our numerical
examples later. The APF is only valid in the condi-
tion of small state noise. When the state noise is large,
the prior function contains few information to predict
the future state. The shape of the likelihood function is
closer to the posterior function of the state. In this case,
as pointed out by [19]: It is therefore of paramount
importance to move the particles towards the regions of
high likelihood.”

We propose a new technique that may be used for
any nonlinear system described by the state-space model
(1)—(2) with large state noise. Our method uses a two-
stage sampling technique :

1. For j =1,...,M, draw ;7 ~ p(x¢|zt_;) and com-
pute the conditional likelihood p(y:|zy”).
i,5"

2. Select the particle z;” whose conditional likelihood

is maximum and set i = 27"

In the first step, the particles move randomly according
to the prior information like in the BF, and in the second
step, the information y; is used to select the particle with
the maximum conditional likelihood. This new sampling
schema uses M as a compromise parameter between the
prior function and the likelihood. When M = 1, only
the prior information is used, this is the conventional
BF; when M increases, more observation information is
used. The resulting algorithm is the following :

Remark 1. In the MBF, we select particles from the
prior density with high likelihood. Essentially, this idea
is the same as the resampling which chooses particles
according to their likelihood.

Algorithm 1 Modified bootstrap filter(MBF')

Initialization, ¢t = 0
for i =0to N do

Draw particle xf) ~ p(zo) and set t = 1
end for
fort=1to T do

fori=1to N do

for j=1to M do
Draw particle a7 ~ p(a|zt_;)

Compute the conditional likelihood p(y:|x;”)

end for .
Select z3” such that p(y|zy? ) is maximum
Set 2§ = 207

end for

Resample particle from the 2! according to the

weights w?

end for

Remark 2. In the MBF, the ID depends on M. It
is difficult to get ID’s analytical expression. It can be
approximated by the prior function. The weight can be
approximated by

: PCHEEY '

Remark 3. M is an integer and M < oo. How to
choose M is the key point in the MBF. M is chosen
accordingly to the ratio of the state noise variance and
the observation noise variance. M increases when this
ratio increases.

Remark 4. The MBF is different from the APF which
chooses the particles whose conditional expectation has
high conditional likelihood. The MBF is used in the
scenario of a large state noise, while the APF is used in
the scenario of small state noise.

5. NUMERICAL EXAMPLES

It is difficult to compare the performances of nonlinear
filters by a theoretical analysis since in general an ex-
plicit expression of the estimation error is not available.
We compare the MBF with the BF, the PFEKF (PF
with the EKF to produce the ID), the UPF (PF with
the UKF to produce the ID), PFMCMC (PF with the
Markov chain Monte Carlo resampling, see [7]) through
numerical simulations. We show that the MBF using N
particles is more efficient than the BF using IV particles,
but the implementation time is slightly longer. Now, for
a same implementation time (which means using more
than N particles in the BF), we show that the MBF still
outperforms the BF.

We consider a nonlinear model which was used in
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| Filter (Sample size) | [ o® [ Time |

BF (600) 351 | 0.98 | 2.04

BF (2000) 341 | 054 | 9.06
PFMCMC(600) 3.45 | 0.53 | 6.63
PFMCMC(2000) 3.35 | 0.39 | 21.91
PFEKF(600) 21.67 | 1.06 | 11.02
UPF(600) 21.72 | 1.06 | 19.68
MBF (600) 3.34 | 0.33 | 9.01

Table 1: Comparison of estimation result by different
filters

[19] and is given by

Tt—1

xy = —40 +sin(wn(t — 1)) + + uy,
2
e = %4’”1&, t§30,
Tlm - 240, t>30,

where w = 4e — 2, u; follows a I'(80,0.5) distribu-
tion, and v follows a N(0,1) distribution. We want
to estimate the hidden states x; for t = 1,...,T. Let
Ty = % vazl x! be the estimation of z; obtained by the
N particles x} after resampling. To measure the perfor-
mance of estimation of the states x; fort =1,...,T, we
introduce the root mean-squared error

T
1 Z R
RMSE = T t:1($t — xt)Q.

We calculate RMSE with T' = 60 for both algorithms
using different numbers of particles. We take M = 3 in
the MBF. The experiment is repeated 100 times inde-
pendently.

In Table 1, p and o2 denote the estimated mean and
variance of RMSE calculated over the 100 realisations.
Time denotes the computation time of our Matlab code
expressed in seconds and measured on a PC with a Pen-
tium D at 3.40 GHz. We see that for a same number of
particles (600), the MBF outperforms the BF in terms
of mean and variance of the RMSE but the computation
time is multiplied by 3. Now, when the BF uses 2000
particles and the MBF uses 600 particles, the MBF still
outperforms the BF but using less time. This is the ad-
vantage of the MBF with respect to the BF. The PFEKF
and the UPF provide worse performances than the ba-
sic BF. The PFMCMC could improve the performance
of the basic BF but it uses more time. When using
600 particles in the PFMCMC, its performance is bet-
ter than the BF but worse than the MBF, while it uses
more time than the BF but less time than the MBF.
When 2000 particles is used in the PFMCMC, it works
still worse than the MBF using 600 particles, but it uses
much more time than the MBF. We conclude that the
MBEF is the best filter when the same computing time is
used.

When the same number of particles (600) is used,
since the MBF exploits the observation information of
yt, it outperforms the BF. This is easy to understand.
When 2000 particles are used in the BF, the perfor-
mance of the MBF is still better then the BF. Because
the MBF chooses the most possible survival particles
which are different from the BF. Furthermore, these 600
particles of the MBF are better than the best 600 par-
ticles of the PF because they include the observation
information.

In Figure 1, we show for one realisation the result
of the state estimation z; for ¢ = 1,...,60 obtained
after resampling, using 2000 particles in the BF and
PFMCMC, 600 particles in the MBF. We see that the
results are more precise with the MBF than with the
BF and the PFMCMC . This is confirmed by Table 1.

In Figure 2, we show for the same realisation the re-
sult of the state estimation x; for t = 1,...,60 obtained
after resampling, using 600 particles in the MBF, the
PFEKF and the UPF. It is clear that the PFEKF and
the UPF provide very bad results of the estimation. It
is because that the posterior density of the state is quite
different from the Gaussian distribution. The MBF is
better than both the PFEKF and UPF.

15 3
O Truex
0 “ 4 MBF
10 v PEMCMC o
i BF =
Tth
'q L 3
(4] o ¢ | jo
= = *
£ E 0

-15 I I I
0 10 20 30 40 50 60
Time

Figure 1: State estimation using 2000 particles in the
BF and the PFMCMC, using 600 particles in the MBF

6. CONCLUSION

We have proposed a modification of the standard PF
for nonlinear filtering. The idea is to select particles
with high conditional likelihood. Our algorithm outper-
forms the PF with the same computational complexity
when the state noise is large. In the future, it will be
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Figure 2: State estimation using using 600 particles in
the MBF, the PFEKF and the UPF.

interesting to investigate how to choose the number M
adaptively.
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