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ABSTRACT

On an fMRI data analysis, it is common to assume that we
know when stimuli were presented or when subjects per-
formed atask. However, for mental tasks such as memory
retrieval, we cannot obtain an exact time of the task execu-
tion. When we use complex stimuli or natural stimuli such
as amovie in experiments, then sometimes we cannot define
the presentation time of stimuli straightforwardly. For these
cases, we propose measures of a neural activity that we can
obtain without a time series of stimuli presentations or task
executions. We apply a blind deconvolution algorithm to an
fMRI data set and separate it into a Hemodynamic Response
Function (HRF) and a series of presentation times of stimuli.
We propose to use values of the cost function for this sep-
aration algorithm as measures of a neural activity. The cost
function is consisted of two terms. Oneisan error term repre-
senting discrepancy from a conventional convolution model
of fTMRI. The other term represents statistical characteristics
of the estimated stimuli presentation time series.

1. INTRODUCTION

In fMRI data analyses, model-based methods are most com-
monly used. For natura stimuli [1] or complex stimuli, of-
ten time series of stimuli cannot be obtained or there are
many components of interest in stimuli. It is pointed out
that adata-driven method is necessary for these experiments.
Some data-driven methods have been proposed, such as, In-
dependent Component Analysis (ICA) [2], clustering based
on time series [3] and a canonical correlation analysis ap-
proach [4]. Here, we propose a novel data-driven analysis
method for fMRI data.

A series of fMRI data is often modeled by the convolu-
tion of the hemodynamic response function (HRF) and atime
series of presentations of stimuli. Usually we assume that we
can obtain both the HRF and the time series of stimuli. If the
fMRI datafrom the voxel is close to the convolution of them,
we conclude that the voxed is related to the processing of the
stimuli. When we cannot obtain atrue time series of stimuli,
we can use a blind signa processing technique to estimate
the time series from data. In that case, in addition to the
convolution model, we put an assumption about some statis-
tics of the time series of stimuli and constitute a generative
model of the fMRI data. A measure of goodness of fit to this
generative model is used as a cost function to estimate the
time series. In our method, we propose to use this measure
to judge whether some neural activity occurres in the voxel
or not. For an assumption about statistics of the time series

© EURASIP, 2009

of stimuli, we put two assumptions, a sparse distribution and
aGaussian distribution.

Sincewe use ablind signal separation algorithm, an HRF
either can be estimated from the data or can be assumed a
priori. Considering the difference of HRFs from areato area
or from subject to subject [5], we estimate them from the
data.

We applied the proposed algorithm to fMRI data when
visual stimuli are presented to a subject. We used the stan-
dard analysis of variance to classify voxelsinto activated re-
gions and deactivated regions. Then we examine whether the
proposed measures take different values between data from
voxels with neural activities and data from voxels without
them.

Blind deconvolution of fMRI data was proposed by
Hansen (2003) [6]. They separated multi-voxel datainto neu-
ral activities, noise and artifacts and separation into an HRF
and a stimuli time series was not examined in detail.

Hutchinson et a. (2009) [7] proposed a method called
Hidden Process Models which estimates both an HRF and
a time series of stimuli from a set of fMRI data. In most
cases, they put stronger assumptions on presentation times
of stimuli than our method and mainly studied multivariate
analyses.

2. BLIND DECONVOLUTION ALGORITHM

We use a blind deconvolution algorithm derived in the same
way as Olshausen and Field (1996) [8]. x(t) denotes fMRI
data measured at a certain voxel where an index for time is
t. s(t) denotes a time series of stimuli which typically takes
1 when astimulus is presented and takes O at other times. A
waveform induced on fMRI data by a single stimuli, that is
an HRF isrepresented by a;. Then, fMRI datais assumed to
be generated as follows.

X(t) = szazafs(t—rJrl)Jre(t) (1)

£(t) denotes noise and it is assumed to be normally dis-
tributed and white.

In our analyses, we allow s(t) to take any real valuesin-
stead of binary values of 0 and 1. Positive values can rep-
resent strengths of activations induced by stimuli. Negative
values cannot be interpreted as stimuli presentations and un-
natual. One way to avoid this is to add a constant value to
x(t) for making it positive and to assumethat both s(t) and a;
are positive. Our analysis of fMRI data follows this method
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partly. We make most parts of x(t) positive and alow s(t)
and a; to take negative values. This can decrease effects of
small outliers in x(t) compared with an analysis with per-
fectly positive x(t).

Here we consider only one waveform of HRF a; per a
voxel. In this paper, we mainly describe voxelwise analysis
methods. Therefore, s(t) can be defined voxelwise aso. If
one voxel is activated by only one kind of stimulus or task,
eg. (1) can be interpreted simply. The time series s(t) can
be a mixture of different kinds of stimuli or tasks. In this
model, till, a; is assumed to be the same single waveform
for the voxel. Differencesin magnitudes, durations and time
lags of the HRF can be modeled in s(t). The additive noise
on fMRI datais known not to be white and the whiteness as-
sumption of the model is not accurate. However, the white-
ness assumption appears in our proposed algorithm only as
a minimum square error principle and it dose not force the
residual noiseto bewhite. Different HRF waveformsfor dif-
ferent kinds of stimuli or an additive noise with a time cor-
relation should be modeled in future studies. Here we study
behaviors of the simplified model.

The distribution of s(t) was assumed to be sparse in Ol-
shausen and Field (1996) [8]. Here we employ two assump-
tions, a sparse distribution and a normal distribution.

We assume eg. (1) and the presentation times of stim-
uli distribute sparsely or normally. We estimate a; and s(t)
from the data by minimizing the following cost functions to
retrieve the time series of stimuli.

Ls =D (X(t) — Y ars(t — 7+ 1))% + As . log(1+ Bs(t)?)
t T t
2
Ln =2, (X(t) = Y ars(t — 7+1))2+ 27 3 s(t)? ©)
T t

t

For Lg, the cost function can be interpreted as a likelihood
given data x(t). The probabilistic distribution of s(t) is a
Cauchy distribution [8] which is a sparse distribution and the
distribution of x(t) —>.;a;S(t — 7+ 1) is a normal distribu-
tion. Thisisakind of the maximum a posteriori estimation.
For Ly, the distribution of s(t) is a normal distribution and
other properties are the same as Ls.

First we determineinitial values of a; and s(t) either ran-
domly or based on a priori information of characteristics of
these variables. The processes for updating a; and updat-
ing s(t) are iterated. When we estimate both a; and s(t)
from data, we cannot determine magnitudes of these vari-
ables. Therefore, we assumethat ¥/ a2 = 1.

First, we fix s(t) to tentative values and update a;. This
process is common to Ls and L. a; that minimizes the cost
function Lg or L, under the constraint 25"3{ a% =1 can be
obtained from the following equation obtained by using the
Laglange multiplier method,

%—u +2uay =2 (D ast—t+1) —x(t))st —u+1)
t 7
+2l~LaU:07 U:1a27"'Tmax (4)

The equation can be written by using vectors and a matrix.
Here, a= (ay,a,--- ,as,,)" and the k-th component of the
Tmax dimensional vector C« is

{Esdk= 2 x(U)s(t —k+1) ©)

and the kl-component of the Tyax-by-Tmax matrix Cssis

{Cshy = 2 st —k+1)s(t—1+1). (6)
t
Then eq. (4) can be written as follows.
JaL
£+2‘ua: 2Cssa—2Cx+2ua=>0

Multiplying both sides by a', we obtain

p=—a'Csata'cy @)

The second derivative is also calculated to derive an up-
date rule from the Newton method.

J <‘9L +2Ltau> =2 s(t—v+1)s(t —u+1) +2uduw
t

day \ day
)
where dyy isaKronecker delta. It can be written as
d (oL
where | denotes an identity matrix.
Finally the update rule is derived as follows,
a—a— i %+2a - %+2a
da\da H Ja H
= (Cs+(-a'Csa+a’cx)l) e (10)
a
a— —- (11
al

Next, for Ls, we fix a; and update s(t) to decrease L sim-
ply by the gradient method,

s(t) «s(t) —¢( d‘l'z:)) (12)

dLS
ds(t)

=23 (Y ast+u+1—1)—x(t+u))ay

2Bs(t)
1+ Bs(t).2
For Ly, we fix a; and update s(t) by solving dL,/ds(t) = 0
where
dln
ds(t)

+ A (13)

2Y (Y arst+u+1—1)—x(t+u))ay
+ An2s(t) (14)

We iterate a step to update a; with fixed s(t) and a step to
update s(t) with fixed a; until changes of values by update
processes are small enough. In this way, we estimate a,; and
S(t) that minimizes L or Lp.

3. ANALYSES OF FMRI DATA

We used data from Hasson et al. (2001) [9]. The data set
is obtained through the fMRI data center(www.fmridc.org).
The accession # is 2-2001-111P8. The origina paper is on
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processes of local features of objectsin vision. Though they
showed various kinds of pictures to subjects, here we ana-
lyze the data focusing only on whether a subject was seeing
an object or ablank screen. We used a data set from a single
subject in which activated regions for visual objects com-
pared to a blank screen are clearly identified. TR was 3 sec.
In the most part of the experimental period, a pair of a pre-
sentation of an object for 9 sec (3 scans) and a presentation
of ablank screen for 6 sec (2scans) was repeated. A total of
167 scans was obtained and the first presentation of an object
started at the 5-th scan.

The data is analyzed by a standard method using the
analysis of variance and the regions activated by presenta
tions of objects were identified. For this analysis and neces-
sary preprocessing for it, we used the SPM software, which
can be downloaded from http://www.fil.ion.ucl.ac.uk/spm/ .
We chose twenty voxels randomly from activated and deac-
tivated regions and applied the proposed blind deconvolution
algorithm with asparse or anormal prior to the data. A voxel
is classified as activated where t value is more than 7.00. It
corresponds to uncorrected p-value less than 3.45 x 1011,
A voxe is classified as deactivated wheret value isless than
3.00 which corresponds to uncorrected p-value more than
1.57 x 1073,

Before applying the agorithm, we low-pass filtered the
dataat 0.0167 Hz to remove slow drifting components. Then
we normalized each data so that their mean valuesare 1.3 and
their variances are one. With this mean value, about 90% of
values in a series are nonnegative. The proposed deconvo-
lution agorithm does not assume explicitly that s(t) is non-
negative. However, it is natural to assume that time series
of stimuli take positive values and that HRFs were added to
form fMRI data. This is the reason for the positive mean
vaue.

Initial values of a; are decided from a common shape of
an HRF[10].

-1

a; = k(7 — 1)8%¢ o5a7 (15)

Initial values of s(t) are decided to minimize || >, a;s(t — T+
1) —x(t)|| with the initial values of a;. We fixed Tmax = 5,
thus s(t) is defined for t = 1,2, ---, 163 . We fixed A =
0.002 x 163 and 8 = 25.

First, we show examples of the original fMRI data after
we apply ahigh-passfilter to them and normalize their means
and variances. A signal from an activated region is shown in
Figurel (a). It reflectsaperiod of 5 scans of the experimental
design, that is, a presentation of an object for 3 scans and a
break for 2 scans. A signal from adeactivated voxel is shown
in Figure 1 (b). It does not have this property.

We show values of the cost function Lg and L, after the
convergence of a; and s(t). In Figure 2 (a) , a value of the
cost function L for time series from each voxel is shown by
acircle and their mean value is shown by a cross. The left
side of Figure 2 (a) shows values for the data from an acti-
vated region and the right side shows those for the data from
a deactivated region. We found a clear difference between
these two groups. Values of the cost function for data from
activated regions are mostly lower than those for data from
a deactivated region. Since these values can be calculated
without a true time series of stimuli, the cost function could
be an index of the existence of some neural activity. Values
of the first term of L, Ly = || ¥, a.S(t — 7+ 1) — s(t)[|? and

6 6
4 4

£2 22
0 0

%0 a0 g 80 100 o a0 s 8 100

scan scan

Figure 1: Original fMRI data after preprocessing. () A sig-
nal from aregion activated by presentations of objects. (b) A
signal from a deactivated region

the second term of L, L, = AsY; log(1+ Bs(t)?) are shown
in Figures 2 (b) and (c) in a similar way. In both indices,
the difference between activated regions and deactivated re-
gionsis not as clear asin Ls. Note that we normalized the
means and the variances of x(t) and the norm of a; so that
we could compare the values of the cost function between
different data.
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Figure 2: (a) Values of the cost function L after convergence.
A value for time series from each voxel is represented by a
circle and their mean value is represented by a cross. visua:
values by data from an activated region. control: values by
data from a deactivated region. (b) Values of the first term
of cost function, L;. Other conventions are the same as in
(a). (¢) Values of the second term of cost function, L. Other
conventions are the same asin (a).

In Figure 3 (a) , a value of the cost function L, for
time series from each voxel is shown by a circle and their
mean value is shown by a cross. The left side of Figure
3 (a) shows values for data from an activated region and
the right side shows those for data from a deactivated re-
gion. Values of L, also showed difference between activated
voxels and deactivated voxels. However, the difference is
less clear than that of Ls. Values of the first term of L,
L1 = || T;ars(t — 7+ 1) —s(t)]|? and the second term of L,
Lo = An Y S(t)? are shownin Figures 3 (b) and () inasimilar
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way. For Ly, the values of the first term tend to be lower for
data from activated regions. The values of the second term
tend to be lower for data from deactivated regions. In both
cases, the differences are not as clear as Ls.
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Figure 3: (a) Values of the cost function L, after conver-
gence. A value for time seriesfrom each voxel isrepresented
by acircle and their mean value is represented by across. vi-
sual: values by datafrom an activated region. control: values
by datafrom a deactivated region. (b) Values of thefirst term
of cost function, L;. Other conventions are the same as in
(a). (c) Values of the second term of cost function, L. Other
conventions are the same asin (a).

We examine how x(t) is deconvolved into s(t) and a; in
detail especialy for the sparse prior case. Examples of esti-
mated s(t) by minimizing Ls are shown in Figure 4. Thetime
series shown in Figures 4 (@) and (b) are estimated from the
fMRI data shown in Figures 1 (a) and (b), respectively. That
is, Figure 4 (a) shows s(t) from an activated voxel and Figure
4 (b) shows s(t) from a deactivated voxel. In s(t) estimated
from the data from an activated voxel, there are large peaks
mostly every 5 scans and the time series is similar to a true
time series of stimuli. The time series s(t) estimated from
the data from a deactivated voxel is also peaky, however, we
can not find a periodic structure.
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Figure 4: Estimated s(t) by the proposed sparse blind decon-
volution. (8) s(t) estimated from x(t) shown in Figure 1 (a).
(b) s(t) estimated from x(t) shown in Figure 1 (b)

We can use the obtained time series s(t) to estimate atime

series of presentations of stimuli. However, in this data, the
accuracy of estimation of stimuli time series from s(t) was
not very different from estimation results of x(t).

We examined how much negative valuesexist in s(t). Af-
ter normalizing the variance of s(t) to one, we counted times
when s(t) < —0.1, that is, when it takes a significant nega-
tivevalue. In asparse prior case, 1.7 % of s(t) from activated
voxelsand 3.6 % of s(t) from deactivated voxels take val ues
lessthan -0.1. In aGaussian prior case, 13 % of s(t) from ac-
tivated voxels and 11 % of s(t) from deactivated voxels take
valueslessthan -0.1. In any case, therateis small and we an-
ticipate that a nonnegative constraint to s(t) would not affect
estimation results strongly.

The estimated HRFs by minimizing Ls are shown in Fig-
ures 5 (&) and (b). They are estimated from x(t) shown in
Figures 1 (a) and (b) respectively. The HRFs estimated from
X(t) obtained from activated regions tend to have wider peak
with non-zero ag or as. Some HRFs estimated from x(t) ob-
tained from deactivated regions showed large decrease after
taking the maximum value at T = 3. However, for both sets
of data, the obtained HRFs have certain variety. Detailed
analysis is left for a future study. We aso learned a; with
random initial values and confirmed that with data from ac-
tivated voxels, in many cases, they converged to unimodal
shapes similar to Figure 5 (a).
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Figure 5: HRFs estimated from fMRI data by using the pro-
posed sparse blind devonvolution. (a) a; estimated from data
shownin Figure 1 (a). (b) a; estimated from datain Figure 1

(b)

4. DISCUSSION

We assumed a generative model of fMRI datawhichisacon-
volution of an HRF and atime series of stimuli. In addition,
we assume that the values of time series of stimuli s(t) dis-
tribute sparsely or normally. We constitute cost functions to
estimate a; and s(t) from fMRI data based on the mode! and
the assumptions. Values of the cost functions are different
between data from activated regions and those from deac-
tivated regions. The cost function Lg with a sparse prior of
S(t) showed clearer difference. Thismeansthat datafrom ac-
tivated regions are more compatible to the generative model
defined by eq. (1) and the sparsity of s(t). The value of the
cost function can be calculated without a true time series of
stimuli. Therefore, it could be used to detect activated brain
regions when we could not obtain an exact time series of
stimuli, for example, with natural stimuli or complex stim-
uli.

By using the proposed algorithm, we could estimate a
time series of stimuli from results of deconvolution s(t).
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However, for these data, the advantage over estimating them
from x(t) was not very large. We also estimated voxel-wise
HRFs. For sets of data from activated regions, we could ob-
tain unimodal HRF shapes consistent with the conventional
HRF shape.

Parameters Tmax, As, An and B were determined in heuris-
tic ways. We shifted the used values to some extent and con-
firmed that the obtained results basically hold around used
values of these parameters. For example, with alittle longer
a; such as tmax = 8, the qualitatively similar results are ob-
tained.

Some extensions of the proposed agorithm is possible.
First, we could impose anonnegative constraint to s(t) and/or
a; and see how different the results from the current study.
Second, we could construct an algorithm to estimate a time
series of stimuli using data obtained from multiple voxelsto-
gether. This could give a better estimation of the time series.
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