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ABSTRACT This paper proposes the use of a recently introduced

Broadband adaptive beamforming algorithms based on thoadband eigenvalue decomposition (BEVD) [5] to per-
least mean square (LMS) family are known to exhibit slow!0r™m strong decorrelation, which removes correlation be-

convergence, if the input is correlated. In this paper, wie wi WEeN any pair of signals for all lag values, in order to

utilised a recently proposed broadband eigenvalue decomplProve the convergence behaviour of an LMS broadband
sition method to provide strong spatial decorrelationevaf ~ 2daptive beamformer. As an example, we apply this tech-
the same time reduces the subspace in which the beamforifiidue to a generalised sidelobe canceller, which is briefly r
ing algorithm operates. Additional temporal decorrelatio viewed in Sec. 2, togethe_r with its input covariance matrix
is gained by operating the beamformer in oversampled fiiand traditional dgcorrelatlon approaches. Sec. 3 intregluc
ter banks. Hybrid structures which combine both spatial angifong decorrelation by means of a BEVD to the input of the
temporal decorrelation demonstrate to provide fastereeny 2daptive filter. Strong spatial decorrelation is completeen

gence speed than the normalised LMS algorithm or either dfY {€mporal prewhitening using an oversampled subband ap-
the decorrelation approach on its own. proach [6, 7] in Sec. 4, resulting in two structures, whose

performances are com_pared to a number of benchmarks in
1 INTRODUCTION Sec. 5. Finally, conclusions are drawn in Sec. 6.

For a number of applications, particularly in acousticgirhe 2. GSC BEAMFORMER
formers are required to operate across a wide bandwidth
a considerable spatial and spectral resolution. This tesul
in systems with a large number of sensdvk, followed by
tap-delay lines (TDLs) of considerable lendth If adap-

. . L .

%\ linearly constrained minimum variance (LCMV) beam-
former performs the minimisation of variance of an out-
put signal with respect to some spatial and spectral con-

tive solutions to this beamforming problem are sought,r1thestr"’lints [8]. The LCMV problem can be implemented alter-

the dimensionality of the beamforming problem generallﬁhaﬁ\éels/ by tthe GSC tec?ni.qu% [9]bwhich pirformts p:jojedct
prohibits the use of computationally intensive but fast-con . e at_a on ot?]nclimconﬁ ralnsLSsu SLpﬁge w ebre S ag_lar op-
verging algorithms such as the recursive least squares)(RLE&MISation methods such as or LVIS can be readily ap-
family [1] or the Newton method [2]. In contrast, approache lied. The projection is performed via a quiescent vector
with low computational cost such as those based on the LMS¥¢ and a blocking matrbXC,, who are constructed from the

type adaptive filter [3] are prone to slow convergence partic€amformer’s constraint equation. The aim of the quiescent
u%grly wh%n the nur[nl])er ofpcoefficients is high é?nd thepif::putv":'CtOIr is to isolate the signal of interest (SOI) as best as po

signal correlated due to highly structured interference. S'bl? Wh"f‘ ':Eet%l]ocklnbg matrlxtrecr1110\{es ?Irt]y SOl cct)mp_o-
Best convergence conditions are realised for LMS—typé1en S, such that the subsequent adaptive Tilter operates in a

adaptive algorithms, if the input to the adaptive filter isale adaptive noise cancellation architecture [3].

related and all modes of convergence have equal power [3, 4]. Lo

In [4] this is achieved by preprocessing the TDLs with a4"1'l Simplified GSC Structure

Karhunen-Loeve transform (KLT) — or suboptimally by a For a broadband SOI impinging onto a linear array from

number of data-independent transforms such as the DFBroadside, the blocking matrix can be simplified by the cas-

DCT, or DST — which decorrelates the input vector to thecaded columns of differencing (CCD) method [9]. In a sim-

adaptive filter. An additional power normalisation stage isplest case, CCD provides a quiescent vector

generally required to realise fast convergence, but may ham

per steady-state performance due to noise amplification. 1 11... 17
Translating [4] to beamforming and multichannel filter- aEVILER

ing means that the KLT is applied across all channels and ) ) ) .

lags spanned in the TDLs. Applying the KLT to the spa-and block matrix that subtracts adjacent sensor signatgusi

tial dimension only works for narrowband beamforming, but

eRM. (1)

neglects correlation across successive lags arising foom c 1 -1 0

volutive mixing, which extends over both spatial and tempo- o

ral dimensions. Therefore after convolutive mixing, previ C, = ’ ' e CM-1)xM (2)
ously independent signals are not just spatially corrdlate T

the same time instance but also over a range of lag values. 0 1 -1
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The simplification is based o0&, only being applied to the Ry, s[0] are diagonalised, while the remainder of the matrix
spatial component of the data. However, with sensor arragemains non-sparse.

data collected ixx[n], it can be easily the verified that The application of the KLT is in general not sufficient

in order to increase the convergence speed, since a power
us[n = Cax[n] eCM1, (3) normalisation stage is also required in order to balance all

modes of convergence [4].

is free of SOI. The blocking matrix outpuis[n] € CM con- [PERHAPS LEAVE OFF?]

tains spatial data only, and need to be buffered in tap delay

lines (TDLs) prior to being passed as[n] € CM-IL to 3. GSC WITH STRONG SPATIAL

the adaptive filter vectow, € CM~DL as shown on Fig. 1. DECORRELATION

The adaptive filter is optimised based on a suitable criterio Tps section outlines a method to achieve strong decorrela-

applied to the erroe[n] which is obtained by subtracting the {jon of the data vectous|n] acquired by the sensor array as
adaptive filter output from the quiescent sigda]. shown in Fig. 1.

2.2 Covariance Matrix 3.1 Broadband Eigenvalue Decomposition

When optimisingw, based on LMS-type algorithms,the |y this paper, we use the broadband eigenvalue decompo-
speed of convergence is influenced by the data covariancgion as defined in [5], which is the extension of the well

matrix known EVD to the case of a polynomial matrix, here
Ruust = & {ustnuldin} . (4) o
Ruuﬁs(z) == z RUU,S[T]27T . (8)

based on the inpuist[n] to the adaptive filter in Fig. 1. This <=0
covariance matrix can also be expressed as .
Note thatBuu’s(z) is parahermitian, i.Ruus(2) = Ruus(2)

Ruusl0] Ruus[~1] .. Ruus[~L+1 whereby(-) indicates the parahermitian operafB,, s(z) =
R or| Ruusfl] Rusl0 : Rfi,s(z'1). The BEVD of such a parahermitian matrix is
uuST= : . . Ruuel 1] given by .
: : ) uus|™ R(z 2)=U(20A(2)U(2) , 9
Ruu,S[Lf 1] RUU,S[]-] RUU,S[O] ( )qus( ) ( ) ( ) (N) ( )
(5)  whereU(z) is paraunitary such thafi(z)U(z) = I and/A(2)
where is a diagonal matrix
Ruyslt] = &{us[njug[n—1]} , (6) A(2) = diag{Ao(2),A1(2),...Aw_2(2)} . (10)
contains spatial covariance only, based on the blocking masimilar to the standard EVDU(z) preserves the signal
trix outputus|n] power, however, the “eigenvalues(z), i = 0--- (M — 2),
are polynomials which are spectrally majorised, i.e. the
35‘0{2} power spectral densities (e/?) = Ai(2)|,_qo satisfy
5,1
n = ' . 7 . . .
us|n| : () No(€%) > A1(e1) > ... > An_2(e®), vQ. (@11)
Us,M—Z[n} L . . . .
Spectral majorisation provides an ordering akin to the sin-
as shown in Fig. 1. gular value decomposition, which removes ambiguity in the

decomposition.
2.3 Decorrelation

In order to decorrelate the input to the adaptive filter, th
above covariance matrices need to be diagonalised. This cdi calculated the BEVD for a given polynomial covariance
be obtained by a Karhunen-Loeve transform (KLT) basednatrix R(z), the sequential best rotation algorithm using sec-
on eitherRyys[T] or Ryyst(7]. If a KLT is applied to the  ond order statistics (SBR2) is utilised as proposed in [5].
input of the TDL block in Fig. 1, theRyys[1] is diago- SBR2 is an iterative technique, which consists of a se-
nalised while folRyysT([T] only the block-diagonal elements quence of elementary steps involving a time shift in combi-
nation with a Givens rotation in order to eliminate the latge
off-diagonal element of the remaining parahermitian matri

eS.Z Sequential Best Rotation Algorithm

x[n] ?\ din] - eln| The algorithms stops if off-diagonal elements have been sup

17 B pressed below a specified threshold, or if a maximum number
of iterations has been exceeded. The result for an estimated

yinl polynomial covariance matriRyys(z) is a decomposition

C ug[n] @ us-r[n] w R .
: = : Ruus(2) = H(2A@H(2) (12)
_ _ _ with a guaranteed paraunitary matik(z), agd an approxi-
Figure 1: Generalised sidelobe canceller. mately diagonalised and spectrally malongqa)
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Figure 2: BEVD-based GSC with a paraunitary preprocessor 1" efn]
N——= A |i: MCQF

H(2) to achieve a strong spatial decorrelation for the inputs Ys™-1
to the adaptive filtew,.

Figure 3: Multichannel adaptive filters (MCAF) operating in
. . . each of theK subbands created B+ 1 analysis filter banks
3.3 Remaining Covariance Matrix (A) and one synthesis filter bank (S); the multichannel isput
When applying the paraunitary matiik(z) e—o H[n]tothe  ustm[n| are theP < (M — 1) spatially strongly decorrelated
array dataus[n| in Fig. 2, the covariance matrix at the output components ofist[n] shown in Fig. 2.

of H[n] has been diagonalised and spectrally majorised ac-

cording to (10). As a result, the input to the adaptive preces

ust[n], has the following associated covariance matrix, design of a suitable prototype lowpass filter [12], and admit
a very low computational cost [13].
A[0] A-1 ... Al-L+1] The temporal prewhitening by filter banks can be ex-
- . ] . ploited by two different structures:
Ryysr— A[1] A[O] K : . (13)  BEVD-Subband GSC (GSC-ST) performs strong spatial
: : . . A1) decorrelation first, followed by filter bank based temporal
AL—1 ... AL Ao whitening;

Subband-BEVD GSC (GSC-TS) uses a filter bank to
prewhiten the array signals, and GSCs with strong spa-
tial decorrelation such as shown in Fig. 2 are performed
within each subband independently.

This matrix is not entirely diagonalised but has only-21
bands with non-sparse entries. Further, due to spectral ma-
jorisation, the outputs oH[n] will have decreasing power,
and only a reduced number of broadband sources are consiéj—
ered, then only those outputs carrying power may be utilise -2 BEVD Subband GSC (GSC-ST) Beamformer
for further processing, thus reducing the dimension of thdhe first approach performs processing similar to the struc-
data and subsequently the computation cost of beamformirigire shown in Fig. 2 up to the output ®i(z). Thereafter,
algorithms. each of thé® < (M — 1) remaining strongly decorrelated sub-
However, if a GSC is operated on the outputidfn] as  channels with non-zero power is decomposed Ktover-
shown in Fig. 2, then temporal correlation remains as a posampled subbands. Within each of tesubbands, a multi-
tential source of slow convergence when using LMS-type alchannel adaptive filter (MCAF) witR inputs is operated in
gorithms. The next section will introduce a method to addi-order to minimise the overall outpen]. This configuration

tionally reduce this temporal correlation. is depicted in Fig. 2.
Within each subband, thHeinputs remain strongly decor-
4. GSC WITH SPATIO-TEMPORAL related, while the support of the auto-correlation funcid
DECORRELATION each input is shortened by approximately the decimation ra-

- o tio N < K, leading to an additional temporal decorrelation.
To perform additional temporal whitening for the BEVD- The power spectral matrix of the MCAF inputs therefore
GSC beamformer depicted in Fig. 2, we here follow a subtakes the same shape as (13) but has an approximidtely

band approach based on oversampled filter banks [6]. times lower order.
. _ Thus, spatio-temporal decorrelation is achieved through
4.1 Filter Bank-Based Temporal Decorrelation the GSC-ST structure. Reconstruction to the fullband sig-

Amongst a number of different subband adaptive structure§l@! can be performed by a synthesis filter bank (S) at the
oversampled systems have been proven to perform very sugUtPut of the MCAFs as shown in Fig. 3. This structure is
cessfully [10, 11] and with a clearly defined bound for the€*Pected to have faster convergence speed compared to the
minimum mean square error performance [7], which can b8EVD based GSC beamformer due to the additional tem-
directly considered in the filter bank design [12]. The subPoral decorrelation and the reduced number of coefficients
band approach is based on separating the signakintell-  courtesy of onlyP < (M —1) input signals to the adaptive
defined frequency bands such that only adjacent bands ovdt{OC€sS.
lap, and decimated by a factor bf < K such that aliasing
in the subbands is kept to a minimum. The subband signafs3 Subband BEVD GSC (GSC-TS) Beamformer
are correlated due to the redundancy introduced in oversarReversing the order of decorrelation, a subband decomposi-
pling, but can be processed independently with the MMSHEion can be applied to each of tihé array signals inx[n].
limited by the alias level. Thereafter, in each of the resulting subband signals a

In order to reduce the filter bank complexity, oversam-BEVD-GSC as outline in Fig. 2 is operated. This system
pled modulated filter banks are used, which only require theetup is depicted in Fig. 4.
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Figure 4. Subband-BEVD GSC (GSC-TS), whereby the ar-
ray signalsxy[n] are decomposed int¢ temporally decorre- .
lated subbands. Within each subband, a BEVD-GSC accord- 20 0 20 20 0 20 20 0 20
ing to Fig. 2 is operated, which implicitly performs a strong

coefficient moduli

spatial decorrelation. 100 100 100
50 50 50
The subband decomposition performs a temporal decor- =L =L =L
relation by reducing the support window of any correlation lag indices

function by approximately a factor dfi. As a result, the

BEVD operates on a power spectral matrix wittimes re-  Figure 5: Polynomial covariance matrix after the applimati
duced order within each of the subbands. Therefore, SBR@f SBR2. [Negative moduli — probably showing real part!]
can be expected to converge faster and with lower order uni-

tary matrices compared to the case of the BEVD-GSC out-

lined in Sec. 3. Within each subband, these unitary matrices Another difference between the GSC-ST and the GSC-
achieve a strong spatial decorrelation. The power spectrglS beamformers is the number of analysis filter bank oper-
matrix within each subband possesses a similar order argtions. In case of the GSC-TS, the number of analysis filter
sparseness to the GSC-ST, and low power outputs can Ipgainks is linked to the number of sensor signis, For the

omitted from further processing. GSC-ST, the count of analysis filter banks depends on the
number of independent interfereR, If the number of in-
4.4 Overall Covariance Matrix dependent broadband interferéris very small compared to

the number of array sensors, this translates into lower com-

For the above cases of GSC-ST and GSC-TS, the overall ¢ lexity requirements for the GSC-ST beamformer compared
variance matrices across the TDLs of all adaptive process S the GSC-TS beamformer

differ in terms of their internal organisation, but shareeae

mon feature found in covariance matrices of subband adap-
tive filters. If R;j(2) is the power spectral matrix defining 5. SIMULATIONS AND RESULTS

the correlation between TDLs located in subbandsid j, ~ The benefit of the proposed decorrelation for a broadband
then due to overlap between adjacent subbands, the matiaxiaptive beamformer is demonstrated below in simulations.
R describing all TDLs is tri-blockdiagonal with non-sparse The simulated scenario contains a signal of interest which

corner elements [13], illuminates aM = 4 linear equispaced sensor array from
broadside. The array is corrupted by an independent broad-
[ Roo Ro1 0 ... 0 Rok-1 7 band interferer covering the spectral inter@le [Z, 7],
Rio Ri1 Rip 0 0 with a signal to interference ratio 6f35dB from an angle
0 Ryi Ror . : —20° measured against broadside.
R= T . The spatially decorrelated BEVD based GSC beam-
0 former (GSC-S) requires an estimation of the polynomial co-
0 . Rioks Rioka variance matrixRuus(z). The number of samples used to
| R0 O .. 0 Re liK—2 RK—l:K—l | estimate this covariance matrix was chosen to be 1000, with

the range of time delays set|tg < 25. The polynomial co-
evariance matriXRyysT(2) estimated from the signalsst(z)
kis depicted in Fig. 5. As only one broadband interferer is
fRresentin the simulated scenario, all the output powerms co
centrated in the first diagonal elementR®f, s7(2) in Fig. 5.
The above BEVD based GSC beamformer (GSC-S) is

benchmarked against the conventional time-domain CCD-
GSC (GSC) setup without any prewhitening as well as a
Instead of applying SBR2 to the full covariance matrix, KLT-based GSC beamformer (KLT). All three beamform-
the GSC-TS calculates paraunitary matriddg(z), k =  ers operate using filters with = 140 coefficients for the
0--- (K —1) based on individual subbands. The covarianceadaptation process. The CCD-GSC (GSC) beamformer was
matrices are based on decimated subband signals and wilirther enhanced by the introduction of temporal decosrela
therefore have a smaller support, which results in both morgon through subband decomposition. This subband CCD-
accurate and faster computation. This also has the bene®SC (GSC-T) structure utilises a prototype filter of length
of reducing the complexity of the SBR2 algorithm, since thel, = 448 to decompose the received data ikte- 16 sub-
number of iterations required to achieve the desired sstalleband signals decimated By = 14 characterised in [6]. Due
value for off-diagonal elements is reduced. to theN times increased sampling period, a reduced TDL of

14
All off-block diagonal terms are due to redundancy in th
oversampled system, and will disappear if the main bloc
diagonal correlation terms — on which they are depende
— are eliminated.

4.5 Complexity Considerations
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6. CONCLUSIONS

This paper has addressed a number of decorrelation ap-
proaches, in both space and time, to decorrelate the inputs
to n adaptive beamformer, for which we have exemplarily
used the GSC. We have shown that recently developed broad-
band EVD can help to improve the convergence speed with
respect to standard implementations as well as a KLT im-
plementation without power normalisation. The BEVD ap-
proach can be complemented by a spatial decorrelation by
means of subband processing, for which additional benefits
in terms of convergence speed were demonstrated in simula-
tions. We have suggested two approaches, which differ in the
order in which temporal (T) and spatial (S) decorrelatiaes a
imposed, and for which slight and scenario-dependent-trade
offs between complexity and convergence speed exist.
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