
A NOVEL TECHNIQUE FOR EFFICIENT PEER-TO-PEER SCALABLE VIDEO
TRANSMISSION

Stefano Asioli, Naeem Ramzan, and Ebroul Izquierdo

School of Electronic Engineering and Computer Science, Queen Mary University of London
Mile End Road, E1 4NS, London, United Kingdom

phone: + (44) 20 7882 7880, fax: + (44) 20 7882 7997
email: {stefano.asioli, naeem.ramzan, ebroul.izquierdo}@elec.qmul.ac.uk, web: www.elec.qmul.ac.uk

ABSTRACT

In this paper, we exploit the characteristics of scalable
video and Peer-to-peer (P2P) network in order to pro-
pose an efficient streaming mechanism for scalable video.
The scalable video is divided into chunks and prioritised
with respect to its significance in the sliding window by
an efficient proposed piece picking policy. Furthermore,
a neighbour selective policy is also proposed to receive the
most important chunks from the good peers in the neigh-
bourhood to maintain smooth content delivery of certain
Quality of Service for the received video. Experimental
evaluation of the proposed system clearly demonstrates
the superiority of this approach.

1. INTRODUCTION

Multimedia applications over the Internet are becoming
popular due to the widespread deployment of broadband
access. However, the conventional client/server archi-
tecture severely limits the number of simultaneous users,
especially for bandwidth intensive applications such as
video streaming. On the other hand, P2P networking
architectures [1] are receiving a lot of interest, as they fa-
cilitate a range of new applications that can take benefit
of the distributed storage and increased computing re-
sources offered by such networks. In addition, P2P sys-
tems also represent a scalable and cost effective altern-
ative to classic media delivery services. Their advantage
resides in their ability for self organization, bandwidth
scalability, and network path redundancy, which are all
very attractive features for effective delivery of media
streams over networks.

In conventional client/server applications, the video
server hosts video contents of different fidelities, such as
high quality material for storage and future editing and
lower bit-rate content for distribution. However, this
process requires either on-the-fly transcoding of com-
pressed content or storage of multiple bit-rate video.
Both these alternatives require that the content is en-
coded many times, which is computationally expensive.
Moreover, the latter option requires additional storage
capacity due to non-exploitation of redundancy among
different versions of the video.

Scalable video coding techniques [2, 3] (SVC) prom-
ise to partially solve these problems, as they allow to
“encode a sequence once and decode it many times, in
many different versions”. They enable content organisa-
tion in a hierarchical manner to allow decoding and in-
teractivity at several granularity levels. That is, scalable

coded bit-streams can efficiently adapt to the applica-
tion requirements. The SVC encoded bit-stream can
be truncated at lower resolution, frame rate or quality
points. After this operation, the video can be decoded
or further truncated.

In this paper, we exploit the features of a scal-
able video codec and P2P networking to perform an
efficient video transmission over a distributed network.
The structure of the scalable bit-stream allows to ad-
apt video sequences to available users’ resources. As a
matter of fact, different viewers will experience differ-
ent video qualities according to their current download
bandwidth. For example, a sudden drop in the download
rate might result in a degradation of the video sequence,
rather than a pause or a loss of frames.

The problem of scalable video transmission over a
P2P network has already been considered in the past
[4, 5]. However, the peculiarity of this work is the use of
a wavelet-based scalable video codec [3] in a BitTorrent-
based [1] P2P system. The main contributions given by
this paper are a new piece picking policy and a new
neighbour selection policy. The first one associates dif-
ferent gains, which result in different priorities, to dif-
ferent parts of the bit-stream, in order to allow video
playback while the sequence is being downloaded. In
practice, this policy selects the subset of the video bit-
stream with the highest bit-rate that can be currently
afforded by a user. On the other hand, there exists a
critical part of the stream, which is a very specific sub-
set of the sequence that cannot be removed from the
original video. The desired behaviour of the system is
that playback should never pause. Pauses occur when a
user fails to receive this critical subset before it is needed
for decoding. Therefore, a neighbour selection policy is
applied, which does not allow a user to request this part
of the stream from peers that might fail to deliver it in
time.

In this paper, Section 2 explains the proposed frame-
work. The main contributions given by this paper are
illustrated in Section 3. Section 4 provides the exper-
imental evaluation of the proposed technique. Finally,
Section 5 concludes this paper.

2. PROPOSED FRAMEWORK FOR
SCALABLE VIDEO OVER P2P NETWORK

This section will give some details about working prin-
ciples of the scalable video codec and the P2P client
used in this work.

18th European Signal Processing Conference (EUSIPCO-2010) Aalborg, Denmark, August 23-27, 2010

© EURASIP, 2010 ISSN 2076-1465 2047

Figure 1 –3D representation of a GOP of a fully scalable
video bit-stream.

2.1 Scalable video coding module

A wavelet-based scalable video (aceSVC) [3] is employed
in this research work. Architecture of aceSVC features
spatial, temporal, quality and combined scalability.
Temporal scalability is achieved through repeated steps
of motion compensated temporal filtering [7]. To achieve
spatial scalability, each frame is decomposed using a
2D wavelet transform. Coefficients obtained through
spatio-temporal decomposition are coded through the
process of bit-plane coding [8] which provides basis for
quality scalability.

2.1.1 aceSVC bit-stream organisation

The input video is initially encoded with the maximum
required quality. The resulting bit-stream is divided into
Groups of Pictures (GOPs). Each GOP is composed of
atoms [9]. An atom is the smallest entity that can be ad-
ded or removed from the bit-stream. Different groups of
atoms form different spatial, temporal or quality layers,
which can be removed to obtain the desired resolution,
frame rate or quality. However, in this work only qual-
ity scalability has been considered. Figure 1 illustrates
the general structure of a GOP; in this example, atoms
are represented by cubes and the three dimensions cor-
respond to the three basic types of scalability. On the
other hand, Figure 2 shows that this very structure can
be seen as one-dimensional if only quality scalability is
considered.

In the main header of the aceSVC bit-stream, the
organization of the bit-stream is defined so that the
truncation is performed at different user points with low
complexity. However, a GOP can only be decoded if its
base layer has been received. It is shown in Figure 2
and it corresponds to the low quality plane of Figure 1.
All the other layers are enhancement layers, which can
be used to improve the received video quality.

...

(GOP)i

...

(GOP)i+1 (GOP)i+2

Base

Layer m Enhancement Layers

Figure 2 –Structure of scalable video bit-stream when only
quality scalability is considered.

2.2 P2P network module

BitTorrent [6] (BT) is a widely used peer-to-peer pro-
tocol developed by Bram Cohen in 2003. The main idea
behind it is that users’ download rates should be propor-
tional to their upload rates, in order to provide a fair
mechanism and motivate users to share more. In the
original version of the protocol, this is achieved using
tit-for-tat [6] mechanism, in which peers mainly upload
data to peers they are downloading from. Moreover,
peers occasionally behave altruistically, in order to dis-
cover potentially good neighbours.

In this research work, Tribler [1] is used as a BT cli-
ent. Its main features include exploitation of social re-
lationships among peers and content discovery through
exploration of the network, instead of browsing a torrent
repository. Finally, Tribler supports video on demand
for non-scalable sequences. In this case give-to-get [1] al-
gorithm is used, instead of tit-for-tat, which means that
peers will upload to peers that have proven to be ‘gen-
erous’ towards third parties, rather than those which
currently have high upload rates.

3. PROPOSED MODIFICATIONS FOR
EFFICIENT SCALABLE VIDEO

TRANSMISSION

In this section, we formulate how the scalable layers
of aceSVC video are prioritised in our proposed sys-
tem. First we explain how the video segments or chunks
are prioritised in our system and then efficient selection
policy of good neighbours for the most important chunks
is elucidated. These are new features, which have been
implemented on top of Tribler client.

3.1 Piece picking policy

The proposed solution is a variation of the piece picking
policy implemented in the give-to-get algorithm [1].

Scalable video bit-streams are split into GOPs and
quality layers as explained in section 2.1.1, while in BT
files are split into chunks or pieces [6], which have a piece
id. Since there is no correlation between these two di-
visions, some information is required to map GOPs and
layers into pieces and vice versa. This information can
be stored inside an index file, which should be transmit-
ted together with the video sequence. Therefore, the
first step consists of creating a new torrent that con-
tains both files. It is clear that the index file should
have the highest priority and therefore should be down-
loaded first.

Once the index file is completed, it is opened and
information about offsets of different GOPs and layers

2048

in the video sequence is extracted. For the purpose of
explanation, we assume for now that all BT pieces are
available from at least one peer and that playback has
already started. In other words, we assume that there
are no missing pieces. At this point, it is possible to
define the following quantities and functions:

L, total number of GOPs in the sequence.
Q, total number of quality layers.
W , is a window size (in GOPs).
(t, q), represents a GOP index (t) and quality layer
index (q), where (t, q) ∈ (0, ..., L) × (0, ..., Q). Each
of these ordered pairs is associated to a set of BT
pieces.
tp, current playback position (GOP). Since playback
has already started, tp > 0.
v(t, q), value function. It measures the value cur-
rently associated to BT pieces of (t, q).
r(t, q), request function. It returns the number of
BT pieces associated to (t, q) that have never been
requested.
S is the set of possible candidates ((t1, q1), . . . ,
(tN , qN)) which a new picked BT piece belongs to.
P (S) = (p1, . . . , pk) is a function that maps a set of
aceSVC GOPs and layers S into a set of BT pieces;
p1, . . . , pk are sorted according to their piece id.

This policy uses a sliding window, which consists of W
GOPs. The first GOP in the window is the one with in-
dex tp+1, while the last one has index tp+W . Assuming
that L� tp + W , the following relations hold:

v(t, q) = 0

if (t ≤ tp, q ∈ (0, . . . , Q)) ∨ r(t, q) = 0 (1)

v(t, q) =
1

1 + q
,

if t ∈ (tp + 1, . . . , tp + W), q ∈ (0, . . . , Q) (2)

v(t, q) =
1

1 + Q + (t− (tp + W))
,

if t ∈ (tp + W + 1, . . . , L), q ∈ (0, . . . , Q) (3)

The value function v(t, q) is used to determine the
benefit given by the receiving of the BT pieces associated
to a certain (t, q) pair. In detail, Eq. (1) indicates that
no pieces lying before the window will be requested, as
no value is associated to the corresponding (t, q) pairs.
The same holds for any (t, q) whose pieces have already
been requested. Eq. (2) indicates that pieces inside
the sliding window that correspond to the same quality
layer also have the same value. Finally, Eq. (3) shows
that pieces lying after the window have a value that only
depends on the GOP they belong to. Moreover, these
pieces always have a smaller value with respect to those
inside the window.

Therefore, a peer requests pieces from layer i+1 only
if it has already requested layer i completely. Similarly,
a peer only requests pieces lying after the window if
all the pieces inside the window are already marked as
requested.

The piece picking rule consists of two steps:

Figure 3 –Sliding window for scalable video bit-stream a)
Pre-buffering phase starts, b) Pre-buffering phase
ends, c) The window shifts after GOP 0, d) The
window shifts after GOP 1.

1. Finding the best set of candidates S, which is given
by S = arg max(t,q) {v(t, q)}. It is a set of (ti, qi)
that corresponds to a set of BT pieces P (S) =
(p1, . . . , pk).

2. Choosing a piece from this set. In this step,
the decision rule is the following. Given S =
((t1, q1), . . . , (tN , qN)):

• If q1 = · · · = qi = · · · = qN = 0, picked piece p
will be the one in P (S) with the smallest id that
has not been requested yet. These are pieces that
belong to the base layer. This rule gives a higher
priority to the base layer of GOPs according to
their distance from the current playback position,
since the closest ones are the most urgently re-
quired for avoiding pauses, as we will see.

• Otherwise, the rarest piece in P (S) that has not
been already requested will be picked. This is the
standard BT picking policy applied to a smaller
set.

The window shifts every ∆GOP seconds, where
∆GOP represents the duration of a GOP. The only ex-
ception is given by the first shift, which is performed
after the pre-buffering, which lasts W ·∆GOP seconds.
Pre-buffering only starts when the index file has been re-
ceived. Every time the window shifts, two operations are
made. First, downloaded pieces are checked, in order to
evaluate which layers have been completely downloaded.
Second, all outstanding requests regarding pieces of a
GOP that lie before the window are dropped. An im-
portant remark is that the window only shifts if at least
the base layer has been received, otherwise the system
will auto-pause. As far as missing pieces are concerned,
they are treated as chunks that have already been re-
quested. However, this only happens during the piece
picking phase. If a missing piece belongs to the base
layer, the system is paused until it is received correctly.

2049

Otherwise, the available chunks will be extracted and
decoded.

Figure 3 shows the behaviour of the system with
W = 3. An early stage of the pre-buffering phase is
shown in Figure 3a. The peer is downloading pieces from
the base layer according to their piece id, while in Figure
3b the first two layers have been downloaded and pieces
are being picked from the enhancement layer 2 according
to a rarest-first policy. In Figure 3c, the window has
shifted. As not all the pieces of enhancement layer 2 of
GOP 0 have been received, this layer and higher layers
are discarded. In this phase, pieces from the base layer
and the enhancement layer 1 of GOP 3 have a higher
priority with respect to enhancement layer 2 of GOP
1 and 2. In Figure 3d all the GOPs have the same
number of complete layers and pieces are picked from
enhancement layer 3. Another issue is the wise choice
of the neighbours.

3.2 Neighbour selection policy

It is extremely important that at least the base layer of
each GOP is received before the window shifts. Occa-
sionally, slow peers in the swarm (or slow neighbours)
might delay the receiving of a BT piece, even if the
overall download bandwidth is high. This problem is
critical if the requested piece belongs to the base layer,
as it might force the playback to pause. Therefore, these
pieces should be requested from good neighbours. Good
neighbours are those peers that own the piece with the
highest download rates, which alone could provide the
current peer with a transfer rate that is above a certain
threshold. During the pre-buffering phase, any piece
can be requested from any peer. However, every time
the window shifts, the current download rates of all the
neighbours are evaluated and the peers are sorted in
descending order.

Let’s suppose that p is a piece belonging to the base
layer that a peer wants to download and N1, . . . , Nk are
the peer’s neighbours that are currently uploading to
(or unchoking [6]) it that own this piece. Since neigh-
bours are sorted, R(N1) > · · · > R(Ni) > · · · > R(Nk),
where R(Ni) indicates the current download rate from
neighbour i and k is the number of neighbours. The
threshold value is calculated as:

RT =
n0 · l(p)

W ·∆GOP
(4)

where n0 represents the number of pieces in the base
layer that are currently inside the window, l(p) is the
size of the BT piece for this file and the other quantities
have been already defined. In other words, RT is the
minimum rate that allows these pieces from the base
layer to be received in time. Assuming that

T ∗=̂ min
T

T∑
i=1

R(Ni) > RT , T ≤ k (5)

T ∗ is the minimum number of neighbours which own
this piece, whose sum of download rates exceeds the
threshold and N1, . . . , NT∗ is the set of neighbours from
which base layer pieces can be requested.

4. EXPERIMENTAL EVALUATION

The performance of the proposed framework has been
extensively evaluated to transmit aceSVC encoded video
over P2P network, where seeders and leechers [6] ex-
ist. Tribler client is used for P2P communication. No
restrictions are applied to download bandwidth of the
leechers, while, as far as seeders are concerned, con-
straints are applied. The proposed scheme can be im-
plemented for any SVC encoded bit-stream. For the
experiments, Crew and Soccer CIF sequences at 30 fps
were encoded in aceSVC format. Crew consists of 12
quality layers (192 kbps to 1536 kbps), while Soccer is
made of 10 (96 kbps to 768 kbps). In both cases the
window size is W = 6.

In the first experiment, a comparison between dif-
ferent behaviours of the system with scalable and non-
scalable sequences is given. Both the piece picking
policy and the neighbour selection policy are active. For
the non-scalable case, Crew scalable sequence is treated
as a non-scalable one, which means that the window is
only shifted if all the quality layers have been correctly
received. On the other hand, for the scalable case the
behaviour of the system is the one described in Section
3. There are only two peers that are currently unchoking
the considered leecher. Upload limit is set to 400 kbps
and 200 kbps for them. The seeder with an upload rate
of 200 kbps periodically disconnects and reconnects to
the network and pre-buffering lasts 12.8 s in both scal-
able and non-scalable cases.

Figure 5 shows that the proposed system allows the
received video bit-rate to follow the download rate of
the leecher in the scalable case, since the upper layers
are discarded. This is not possible with a non-scalable
video, which is paused several times, as it is shown in

Figure 4 –Behaviour of the system with a non-scalable ver-
sion of Crew sequence.

Figure 5 –Behaviour of the proposed system with a scalable
version of Crew sequence.

2050

Figure 6 –Behaviour of the system when neighbour selection
is not active, Soccer sequence.

Figure 7 –Behaviour of the system when neighbour selection
is active, Soccer sequence.

Figure 4. Under the same circumstances, the only way
to avoid pauses in the latter case is to increase pre-
buffering time, which is the behaviour of the original
Tribler.

As far as the second experiment is concerned, Fig-
ures 6 and 7 show the impact of the proposed neighbour
selection policy on the performance of the system. In
this case, upload limit for the seeders unchoking the
considered leecher is set to 320 kbps and 40 kbps. The
piece picking policy is active in both experiments. How-
ever, when the neighbour selection policy is not active,
as Figure 6 shows, the slowest peer is requested pieces
from the base layer which are not delivered in time. This
results in a large number of pauses. On the other hand,
Figure 7 illustrates that this behaviour is not observed
when this policy is in force.

5. CONCLUSIONS

In this paper, we have presented a novel technique which
enabled us to stream scalable video sequences over P2P
network. We proposed a new piece picking policy and
a new neighbour selection policy. The results show that
this piece picking policy allows to adapt the received
video bit-rate to the current bandwidth availability of a
certain user. Moreover, they also show that this neigh-
bour selection policy actually prevents a user from re-
questing base layer pieces from slow peers, which results
in a playback without pauses. The concepts presented in
this paper can be also applied to H.264/SVC, however in

this work we focused on a wavelet-based scalable video
codec. Our future work will focus on the importance of
social-based features in these types of networks.

6. ACKNOWLEDGEMENT

This research was partially supported by the European
Commission under contract FP7-216444 PetaMedia and
FP7-248474 SARACEN.

REFERENCES

[1] J. A. Pouwelse, P. Garbacki, J.Wang, A. Bakker,
J. Yang, A. Iosup, D. H. J. Epema, M. Reinders,
M. R. van Steen, and H. J. Sips, “Tribler: A
social-based based peer to peer system,” in 5th Int’l
Workshop on Peer-to-Peer Systems (IPTPS), Feb.
2006

[2] T. Wiegand, G. Sullivan, J. Reichel, H. Schwartz,
and M. Wien. “Joint Draft 11 of SVC Amend-
ment, Joint Video Team (JVC),” Doc. JVT-X201,
Geneva, Switzerland, Jun. 2007

[3] M. Mrak, N. Sprljan, T. Zgaljic, N. Ramzan, S.
Wan, and E. Izquierdo, “Performance Evidence
of Software Proposal for Wavelet Video Coding
Exploration Group,” Technical Report, ISO/IEC
JTC1/SC29/WG11/MPEG2006/M13146, 2006

[4] P. Baccichet , T. Schierl , T. Wiegand , and
B. Girod, “Low-delay Peer-to-Peer Streaming us-
ing Scalable Video Coding,” in Proc. International
Packet Video Workshop, Lausanne, Switzerland,
Nov. 2007

[5] Z. Liu, Y. Shen, S. S. Panwar, K. W. Ross, and Y.
Wang, “Using Layered Video to Provide Incentives
in P2P Live Streaming,” in Proc. of the 2007 work-
shop on Peer-to-peer streaming and IP-TV, Kyoto,
Japan, 2007

[6] B. Cohen, “Incentives build robustness in BitTor-
rent,” in Proc. of First Workshop on Economics of
Peer-to-Peer Systems, Berkeley, CA, Jun. 2003.

[7] M. Mrak, and E. Izquierdo, “Spatially Adaptive
Wavelet Transform for Video Coding with Multi-
Scale Motion Compensation,” in IEEE Interna-
tional Conference on Image Processing, vol. 2, pp.
317–3320, Sep. 2007

[8] T. Zgaljic, N. Sprljan, and E. Izquierdo, “Bit-
Stream Allocation Methods for Scalable Video
Coding Supporting Wireless Communications,”
Signal Processing: Image Communications vol. 22,
pp. 298–316, Mar. 2007

[9] N. Ramzan, S. Wan and E. Izquierdo, “Error Ro-
bustness Scheme For Scalable Video Based On The
Concatenation Of LDPC and Turbo Codes,” in
Proc. 14th IEEE International Conference on Im-
age Processing (ICIP), San Antonio, USA, Sep.
2007

2051

