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ABSTRACT
In this paper, we develop superfast approximative algorithms for
the computationally efficient implementation of the recent Itera-
tive Adaptive Approach (IAA) spectral estimate. The proposed
methods are based on rewriting the IAA algorithm using suit-
able Gohberg-Semencul representations, solving the resulting linear
systems of equations using the preconditioned conjugate gradient
method, where a novel preconditioning is applied using an incom-
plete factorization of the Toeplitz matrix. Numerical simulations
illustrate the efficiency of the proposed algorithm.

1. INTRODUCTION
Computationally efficient high-resolution spectral estimation algo-
rithms are of great importance in numerous applications. Typically,
to achieve improved resolution, higher than the periodogram, one
has to resort to using parametric or data-adaptive non-parametric
estimation techniques. Due to their inherent robustness to model
assumptions, the data-adaptive approaches are often of particular
interest, and the topic has attracted increasing interest during the
last decade. One such promising technique that is currently widely
studied is the so-called iterative adaptive approach (IAA), recently
proposed in [1], and there shown to outperform the well-known
Capon and APES spectral estimation techniques (see, e.g., [2]) for
data with a sparse spectrum. As a result, the technique has at-
tracted significant interest in a variety of topics [3–9]. As noted
in these papers, the IAA-based estimation techniques allow for ac-
curate high-resolution estimates even when only a few data snap-
shots are available. However, this improved performance comes
at the cost of a notably high computational complexity, suggesting
the need for computationally efficient implementations of such esti-
mates. In [8], we presented several computationally efficient exact
implementations for various IAA-based estimators, exploiting effi-
cient formulations of data dependent trigonometric polynomials as
well as suitable Gohberg-Semencul (GS) representations of the esti-
mated inverse covariance matrix.This approach allows for substan-
tial computational savings, but given the requirement of an exact
implementation, one is still limited to the original formulation of the
methods. In [9], we extended on this work allowing also for non-
stationary signals, formulating both exact and approximative time-
recursive sliding-window implementations of the IAA estimate. As
shown there, the approximative solutions, being based on variations
of GS factorizations as well as a steepest descent formulation of the
algorithm, allow for significant additional computational savings,
while still resulting in estimates close to the exact solution. In this
work, we instead formulate computationally efficient approximate
solutions of the IAA spectral estimate. Extending the GS represen-
tations formulated in [8], we propose to solve the resulting linear
set of equations using a novel Quasi-Newton (QN) preconditioned
conjugate gradient (PCG) algorithm. The proposed preconditioner
is motivated by the QN algorithm formulated in [10, 11], and ap-
proximate the resulting Toeplitz covariance matrix as resulting from
a low-order autoregressive (AR) process. Using a GS factorization
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of the inverse of this approximative covariance matrix as a precon-
ditioning to the CG algorithm will gather the eigenvalues of the ma-
trix in a narrow range, substantially improving the conditioning of
the system. Combined with the use of data dependent trigonomet-
ric polynomials, the resulting QN-PCG-IAA algorithm will, using a
sufficient number of iterations, yield an exact implementation of the
IAA estimate. However, the resulting algorithm will then be com-
putationally more demanding as compared to our earlier fast IAA
(FIAA) implementation proposed in [8]. Here, we are primarily
interested in using the proposed reformulation to allow for approx-
imative solutions using only a few PCG iterations, and as a result
allowing for substantial computational reductions as compared to
the FIAA algorithm, without more than a marginal loss of accuracy
in the resulting estimates.

2. AN OVERVIEW OF IAA AND FIAA
Let {yn}N

n=0 ∈ C denote a uniformly sampled sequence of observa-
tions for which one wish to compute a spectral estimate. Form the
data and frequency vectors

yN+1 = [y0 . . . yN ]T , (1)

fN+1(ωk) =
�
1 e jωk . . . e jωkN�T (2)

where (·)T denotes the transpose, and where ωk = 2π k
K , k =

0,1, . . . ,K − 1, typically with K > N + 1. Denote the power of
the signal Φs(ωk) = |α(ωk)|2, where α(ωk) is the complex-valued
spectral amplitude at frequency ωk, and let RN+1 denote an esti-
mate of the sample covariance matrix. Then, for all frequencies of
interest, the IAA spectral estimate is formed by iteratively estimat-
ing α(ωk) and RN+1, until practical convergence, as (see [1, 4] for
details)

α(ωk) =
fH
N+1(ωk)R−1

N+1yN+1

fH
N+1(ωk)R−1

N+1fN+1(ωk)
, (3)

RN+1 =
K−1

∑
k=0

|α(ωk)|2fN+1(ωk)fH
N+1(ωk) (4)

where (·)H denotes the conjugate transpose, with RN+1 initialized
to the identity matrix IN+1. Typically, no more than m = 10− 15
iterations are needed to allow for convergence [1]. To form an effi-
cient implementation, one may note that RN+1 is the upper left part
of the circulant matrix [8]

CK = WH
K diag

�
|α(ω0)|2, . . . , |α(ωK−1)|2

�
WK , (5)

where WK is the Discrete Fourier Transform (DFT) matrix of size
K ×K. Since CK is a circulant matrix, with its first column de-
noted cK , it can be computed using the Inverse DFT (IDFT) as
cK = WH

K αK , where αK =
�
|α(ω0)|2 . . . |α(ωK−1)|2

�T . As
a consequence of the embedding of RN+1 in CK , the first column
of RN+1, denoted by rN+1, can be extracted as the N + 1 initial
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elements of cK . Once rN+1 has been computed, the solution of the
linear system of equations that appears in (3), i.e.,

RN+1dN+1 � yN+1 (6)

can be solved using the celebrated Levinson-Durbin (LD) algo-
rithm. To do so, partition RN+1 as

RN+1 =

�
r0 r f H

N
r f

N RN

�
=

�
RN JNr f∗

N
r f T

N JN r0

�
, (7)

with r0 and r f
N defined accordingly, where JN is the exchange ma-

trix, which, by using the matrix inversion lemma (see, e.g., [2]),
yields

R−1
N+1 =

�
0 0T

0 R−1
N

�
+ āN+1ā

H
N+1 (8)

=
�
R−1

N 0
0T 0

�
+JN+1ā

∗
N+1ā

T
N+1JN+1 (9)

where
āN+1 =

�
1
aN

�
/
�

α f
N , (10)

and

aN = −R−1
N r f

N (11)

α f
N = r0 +r f H

N aN (12)

The resulting LD algorithm allows for a solution of (6) at a cost of
approximately 2N2 operations. This complexity can be halved by
instead using the GS factorization of R−1

N+1 for the computation of
the matrix vector product that is involved in solving (6). To see this,
we define the down-shifting operator

ZN+1(ν) =
�
0T ν
IN 0

�
(13)

and C(ξ N+1,ν) as the ν-circulant matrix having ξ N+1 along its
first column, given by

C(ξ N+1,ν) =





ξ0 νξN . . . . . . νξ1
ξ1 ξ0 νξN . . . νξ2
... ξ1

. . .
. . .

...
...

...
. . .

. . . νξN
ξN . . . . . . ξ1 ξ0




. (14)

Clearly, C(ξ ,1) and C(ξ ,−1) define a circulant matrix and skew-
circulant matrix, respectively. Moreover, C(ξ ,0) coincides with
the lower triangular Toeplitz matrix L(ξ N+1), formed with ξ N+1
along its first column. Let µ and ν be two constants. Then, it can
be shown that the following lemmas hold [12]:

Lemma 1 The inverse covariance matrix R−1
N+1 can be computed

by the following GS-type factorization, provided that µν �= 1,

R−1
N+1 =

1
1−νµ

2

∑
i=1

σiC(ti
N+1,ν)CH(si

N+1,µ) (15)

where σ1 = 1 and σ2 =−1, and t1
N+1 � āN+1, s1

N+1 = t1
N+1

t2
N+1 � ZN+1(ν)JN+1ā

∗
N+1, and s2

N+1 � ZN+1(µ)JN+1ā
∗
N+1.
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Figure 1: Performance of the QN-PCG-IAA algorithm using only
k = 8 QN-PCG iterations followed by 2 Newton refinement itera-
tions for N = 511, M = 64, m = 10, and K = 2048: a) estimated
spectrum (solid line) and absolute error (dashed line), and b) rate of
convergence.

Lemma 2 The lower order matrix R−1
N allows for a GS factoriza-

tion of the form, provided that νµ �= 1,
�
R−1

N 0
0T 0

�
=

1
1−νµ

2

∑
i=1

σiC(t̄i
N+1,ν)CH(s̄i

N+1,µ) (16)

where t̄1
N+1 � āN+1, s̄1

N+1 = t̄1
N+1, t̄2

N+1 � JN+1ā
∗
N+1, and

s̄2
N+1 � JN+1ā

∗
N+1.

As shown in [13], by using ν = µ = 0, one obtains the standard
lower and upper triangular Toeplitz GS decomposition. If instead
using ν = 0 and µ = 1, one obtains a lower triangular and circu-
lant GS decomposition variant [14]. Finally, if ν = 1 and µ = −1,
a circulant and skew-circulant GS decomposition is obtained [15].
Using (15), one may reduce the cost of solving (6) to about φ(N +1)
operations, where φ(N) denotes the cost of performing an FFT of
length N, providing that āN+1, given by (10), is available. Here, the
circulant and skew-circulant GS decomposition is adopted [15], i.e.

dN+1 =

�
1
2

2

∑
i=1

σiC(ti
N+1)S

H(si
N+1)

�
yN+1. (17)

where, using (14), C(ξ N+1) � C(ξ N+1,1) and S(ξ N+1) �
C(ξ N+1,−1) are circulant and skew circulant matrices. This partic-
ular implementation of the matrix-vector product required to form,
results in a lower computational complexity compared to the stan-
dard approach, bounded by 10φ(N +1), where 4φ(N +1) accounts
for the proprocessing and 6φ(N +1) accounts for the actual matrix
vector multiplication [15], a fact that can be usuful in the case when
the products of the same matrix with several vectors are required.
Thus, the numeranator of (3), fH

N+1(ωk)dN+1, can be computed by
means of fast Toeplitz vector multiplication methods at a cost pro-
portional to φ(N + 1). The denominator of (3) can similarly be
handled using (see also [16])

ϕ(ωk) = fH
N (ωk)R−1

N+1fN(ωk) =
N

∑
i=−N

ϕie j 2π
K ki. (18)

The coefficients of the polynomial defined by (18) can efficiently
be computed using the GS representation of R−1

N+1, at a cost of
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5φ(2(N + 1)) [17]. Finally, ϕ(ωk), for k = 0,1 . . . ,K− 1, is com-
puted using an FFT of size K.

3. THE PROPOSED PCG-IAA IMPLEMENTATION
The CG method can be used to form an iterative solution of a set
of equations such as (6). In theory, the CG algorithm provides the
exact solution of (6) after N +1 iterations. In practice, however, this
may not be so, due to the round-off errors caused by the finite pre-
cision arithmetic implementation. Moreover, the convergence rate
of the algorithm may seriously be affected when RN+1 is an ill-
conditioned matrix. In this case, an increased number of iterations
is required to obtain an accurate solution. One way to handle this
effect is to apply a preconditioning to speed up the convergence rate
of the algorithm, i.e., instead of solving (6), one solves the precon-
ditioned system (see, e.g., [18, 19])

P−1
N+1RN+1dN+1 = P−1

N+1yN+1, (19)

where PN+1 is the so-called the preconditioning matrix, which
should be easy to construct and to invert, and have the property that
the condition number κ(P−1

N+1RN+1) should be close to one, or, at
least, it should be much lower than the condition number of the orig-
inal matrix RN+1. As we are here not only interested in estimation
the solution of (6), but also in computing the displacement repre-
sentation of R−1

N+1, we present a slightly different version of the
standard PCG algorithm, first computing the generators of R−1

N+1,
then applying the PCG on (11), and, finally, estimating dN+1 us-
ing (17). The computational complexity of PCG methods depends
on the type of preconditioning matrix PN utilized. Using a circu-
lant preconditioning matrix is perhaps the most popular approach
adopted, since the inverse of a circulant matrix is easily computed
and a variety of circulant matrices have been proposed and have
been studied in terms of convergence efficiency. Regrettably, we
have using numerical simulations found that the available circulant
preconditioning matrices do not work well, or at all, when used in
combination with IAA due to the inherent assumptions these make
on the spectrum of the Toeplitz matrix, which are not fulfilled in
the here examined case of data with sparse spectra. As a result, we
will instead propose a novel QN based preconditioner, constructed
from an incomplete factorization of R−1

N+1. The QN adaptive algo-
rithm, originally proposed in [10] (see also [11, 20, 21]), provides
an efficient and low complexity implementation scheme of approx-
imate recursive least squares algorithms, by imposing a low order
autoregressive approximation on the input signal of the adaptive al-
gorithm. Motivated by [10], we are here applying an QN method-
ology when forming the iterative solution of Toeplitz systems using
the PCG method. Given a Toeplitz matrix RN , the new precondi-
tioning matrix is constructed from an incomplete factorization of
the inverse R−1

N . Consider the case when the signal can be well
modeled as an AR process of order M � N.

Step 1. Assuming that R� is positive definite, at least for � = M,
R−1

M is computed using (15) as R−1
M = 1/2∑2

i=1 σiC(ti
M)SH(si

M),
where, using (10)-(12),

aM−1 = −R−1
M−1r

f
M−1 (20)

α f
M−1 = r0 +r f H

M−1aM−1 (21)

āM =
�

1
aM−1

�
/
�

α f
M−1 (22)

with aM−1 and α f
M−1 computed either using the LD algorithm, pro-

vided that all principal minors up to size M− 1 are positive defi-
nite, or by using another standard linear systems solution method,
such as Cholesky’s algorithm. This step requires O(M2) operations,
when the LD algorithm is utilized.

Step 2. Given aM , the novel QN preconditioner is constructed
as the Toeplitz matrix QN , whose first column is formed from the
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Figure 2: The computational complexity of the discussed algo-
rithms for different values predictor sizes, M.

autocorrelation sequence q�, � = 0,1, . . .N−1, defined as [10]

q� �
�

r�, � = 0,1, . . . ,M−1
−∑M

i=1 a
[i]
Mq�−i+1, � = M, . . . ,N−1

(23)

The special structure of the Toeplitz matrix QN , being formed as the
Toeplitz matrix constructed using q�, allows for the computation of
the inverse matrix Q−1

N using (8) as

Q−1
N =

�
0 0T

0 R−1
M

�
+AN,N−M−1A

H
N,N−M−1 (24)

where

AN,N−M−1 =





āM 0 . . . 0

0 āM
. . .

...
... 0

. . .
...

...
...

. . . 0
...

...
. . . āM

0 0
. . . 0





� �� �
N−M−1






N (25)

Step 3. We proceed to use PN = QN as the preconditioning
matrix in the PCG scheme. In this case, P−1

N = Q−1
N can efficiently

be implemented using (24). Indeed, due to the special structure of
Q−1

N , the required matrix vector products can be computed using
FFT based schemes, at a cost of no more that O(φ(N))+O(φ(M))
operations. The computational complexity of the proposed PCG
scheme for the computation of the generator of R−1

N+1 is thus

C[QN−PCG] = M2 +9φ(N)+3N +k
�

8φ(N)+9N +6φ(M)+6M)
�

,
where the first term corresponds to the initialization and the sec-
ond term corresponds to the repetitive computations imposed by the
method. We proceed to use the above QN-PCG algorithm to esti-
mate the displacement representation of R−1

N+1, i.e., the estimation
of āN+1, as defined in (10), by means of computing aN in (11) us-
ing the PCG algorithm tabulated along with the QN preconditioner
in (24). We term the resulting scheme the Quasi-Netwon PCG IAA
(QN-PCG-IAA) algorithm and it is tabulated in Table 1. The ini-
tialization of the QN-PCG algorithm can be done either by setting
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aINI
N = 0N , or more efficiently, by using the estimate of aN obtained

in the previous IAA iteration. This stems from the fact that, upon
convergence, RN+1 will not change too much in between succes-
sive IAA iterations. Finally, better performance can be achieved by
introducing a Newton-based refinement scheme following the QN-
PCG solution, with (see also [22])

e f
N = −r f

N −RNaN (26)

aN = aN +R−1
N e f

N (27)

iterated until practical convergence. Usually, only very few steps
are required for the convergence of the algorithm, provided that a
good guess for aN is used for initialization, and an accurate esti-
mate of R−1

N is available. Here, the output of the QN-PCG is used
for initialization and R−1

N is re-estimated at each step from its dis-
placement representation, using (16). Thus, we obtain

�
e f

N
×

�
= −

�
r f

N
×

�
−RN+1

�
aN
0

�

�
aN
×

�
=

�
aN
×

�
+

1
2

2

∑
i=1

σiC(t̄i
N+1)S

H(s̄i
N+1)

�
e f

N
0

�
.

As an alternative, one may form an approximative IAA algorithm
by instead of computing R−1

N+1 use the proposed matrix Q−1
N+1, as

defined in (24), in place of R−1
N+1 directly in the IAA algorithm1.

In this way, an approximate IAA algorithm is formed by iteratively
estimating α(ωk) and QN+1,

α(ωk) =
fH
N+1(ωk)Q−1

N+1yN+1

fH
N+1(ωk)Q−1

N+1fN+1(ωk)
, (28)

RM =
K−1

∑
k=0

|α(ωk)|2fM(ωk)fH
M (ωk) (29)

Q−1
N+1 =

�
0 0T

0 R−1
M

�
+AN+1,N−MAH

N+1,N−M (30)

until practical convergence, for k = 0,1, . . . ,K− 1. Using M � N,
a significant computation reduction can then be achieved, at the
expense of a possible degradation in the quality of the spectrum
estimate. Since M � N, the Levinson-Durbin algorithm is em-
ployed for the computation of the generators of the inverse ma-
trix RM . Moreover, the denominator of (28) can be computed effi-
ciently, since ϕ(ωk) � fH

N+1(ωk)Q−1
N+1fN+1(ωk) equals to ϕ(ωk) =

ϕ̂(ωk)+(N−M)|fH
M āM |2, where ϕ̂(ωk) � fH

M (ωk)R−1
M fM(ωk). We

denote the resulting approximative algorithm the QN-IAA algo-
rithm.

4. PERFORMANCE EVALUATION
To be competitive with the FIAA algorithm, the proposed QN-PCG-
IAA method should be able to provide fairly accurate results using
only a few PCG iterations. For simplicity, the data set described
in [24] is used. The performance of the proposed scheme when
M = 64, the number of QN-PCG iterations is k = 8, followed by
k1 = 2 Newton refinement iterations, is illustrated in Figure 1, where
the norm error, over all frequencies, in this case equals 1.210−5, to-
gether with the evolution of the convergence indicator of the PCG
algorithm, ρκ . As can be seen from the figure, the algorithm offers
an almost as good estimate in this case. The QN-IAA algorithm will
also perform relatively well, even for small values of M (see [12] for
details). The computational complexity of the proposed methods is
illustrated in Figure 2. The curves designated by QN-PCG(k)-IAA,

1We note that a similar extrapolation of the data covariance matrix using
time domain data processing has been used in [23].

correspond to the cost of the proposed QN-PCG-IAA algorithm,
using k PCG iterations, or more precisely k−2 PCG and 2 Newton
refinement iterations, for M = 32, M = 64, and M = 128. Clearly,
the algorithm allows for up to an order of magnitude improvement
as compared to the complexity of the FIAA algorithm, where QN-
PCG(10)-IAA becomes more efficient than the FIAA for N > 256
and QN-PCG(20)-IAA for N > 512, and where the influence of the
size of M on the overall complexity is noticeable only for relatively
small values of N. Finally, as is also illustrated in the figure, the pro-
posed approximate QN-IAA algorithm is seen to offers a significant
further cost reduction (up to two orders of magnitude) for M = 16,
M = 32, M = 64 and M = 128.

It is worth noting that the proposed preconditioning method can
also be used for the solution of Hermitian positive definite Toeplitz
equations. Let the elements of the first column of a Toeplitz matrix,
T, be the Fourier coefficients of the generating function f (θ), i.e.,
(see also [18, 19])

tn =
1

2π

� π

−π
f (θ)e− jnθ dθ , n = 0,1, . . . ,N−1 (31)

The effectiveness of the proposed preconditioner can then be exam-
ined in the context of the iterative Toeplitz solvers, using the gen-
erating functions f1(θ) = θ 4 + 1, f2(θ) = |θ |3 + 1, f3(θ) = θ 4,
and f4(θ) = θ 4(π2 − θ 2) to generate Toeplitz matrices of size
N = 1024, here designated by T1, T2, T3, and T4, respectively.
Moreover, a fifth matrix, T5, is considered, as resulting from the
m = 10 iteration of the standard FIAA algorithm, RN . The right
hand side vector of the Toeplitz linear system to be solved is set
equal to ones, i.e., b = [1 . . .1]T . The PCG algorithms are all initial-
ized by setting the initial guess of the solution sought equal to zero,
while iterations are performed until a desired threshold of the solu-
tion error norm,

√ρ , is reached, usually expressed as tol ·
√

bT b,
where tol = 10−7. The number of iterations required by each PCG
algorithm to reach the desired error threshold are tabulated in Ta-
ble 2, where † indicates that the PCG iterations did not converge
to the given tol after a maximum number of iterations, here set
to κmax = 4000. Apart form the standard CG algorithm (without
preconditioning), here denoted I, we examine PCG using various
circulant preconditioners are examined, namely T. Chan’s precon-
ditioner, denoted CF , and the preconditioners resulting from the
use of the r-th order generalized Jackson kernels, denoted Kκ,2r,
r = 2,3,4, which are the preconditioners considered to be the more
efficient in the case of ill-conditioned Toeplitz systems [18, 19]. Fi-
nally, the proposed preconditioning method is considered, denoted
QN(M), for several values of M. As is clear from the table, the pro-
posed preconditioner offers substantial improvements as compared
to these typically used preconditioners, especially for large values
of M.
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Table 1: The Fast QN-PCG-IAA algorithm
For iteration � = 1, . . . ,m % BEGIN IAA ITERATIONS

RMaM = −r f
M

R−1
M+1 =

1
2

2

∑
i=1

σiC(ti
M+1)S

H(si
M+1)

Q−1
N =

�
0 0T

0 R−1
M

�
+AN,N−M−1A

H
N,N−M−1

For iteration κ = 1, . . .k % BEGIN QN-PCG ITERATION

zN = Q−1
N e f

N

τk−1 = zH
N e f

N
β = 0, (if κ = 1)

qN = 0, (if κ = 1)
β = τκ−1/τκ−2, (if κ �= 1)

qN = zN +βqN , (if κ �= 1)
wN = RNqN

α = τκ−1/(qH
N wN)

aN = aN +αqN

e f
N = e f

N −αwN

ρκ = e f H
N e f

N

End κ % END QN-PCG ITERATIONS

R−1
N+1 =

1
2

2

∑
i=1

σiC(ti
N+1)S

H(si
N+1)

dN+1 = [RN+1]−1yN+1

ψ(ωk) = fH
L (ωk)dN+1

ϕ(ωk) =
N

∑
i=−N

ϕie j 2πk
K i

α(ωk) =
ψ(ωk)
ϕ(ωk)




r0
r f

N
×




T
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Table 2: Number of PCG iterations for various Toeplitz matrices
and preconditioning matrices, for N = 1024 and tol = 10−7

T1 T2 T3 T4 T5
I 71 430 † † 730

CF 5 10 587 350 546
Kκ,4 5 6 24 25 903
Kκ,6 5 6 23 24 937
Kκ,8 5 6 22 25 1022

QN(8) 3 17 902 817 3170
QN(16) 3 5 280 290 1755
QN(32) 2 3 94 95 553
QN(64) 2 2 38 40 167

QN(128) 1 2 21 23 111
QN(256) 1 1 13 15 61
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