MULTIPPOSE AUDIO-VISUAL SPEECH RECOGNITION
Virginia Estellers, Jean-Philippe Thiran
Signal Processing Laboratory LTIS5, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland

ABSTRACT
In this paper we study the adaptation of visual and audio-visual speech recognition systems to non-ideal visual conditions. We focus on the effects of a changing pose of the speaker relative to the camera, a problem encountered in natural situations. To that purpose, we introduce a pose normalization technique and perform speech recognition from multiple views by generating virtual frontal views from non-frontal images. The proposed method is inspired by pose-invariant face recognition studies and relies on linear regression to find an approximate mapping between images from different poses. Lipreading experiments quantify the loss of performance related to pose changes and the proposed pose normalization techniques, while audio-visual results analyse how an audio-visual system should account for non-frontal poses in terms of the weight assigned to the visual modality in the audio-visual classifier.

1. INTRODUCTION
During the last few years a general framework for Audio Visual Automatic Speech Recognition (AV-ASR) has been developed [15], but a practical deployment has not yet taken place because systems lack robustness against non-ideal working conditions. Research has particularly neglected the variability of the visual modality subject to real scenarios, due in part to the lack of large corpora reproducing expected working conditions of the systems, i.e. non-uniform lighting and non-frontal poses caused by natural movements of the speaker. Recently, however, works on meeting room scenarios and in-car vehicle systems made available more realistic data and enabled studies on genuine AV-ASR applications. The first studies of that kind [10, 14] applied directly the lipreading1 systems developed for ideal visual conditions into a real scenario, obtaining poor results mainly due to non-frontal poses. Lipreading experiments quantify the loss of performance related to pose changes and the proposed pose normalization techniques, while audio-visual results analyse how an audio-visual system should account for non-frontal poses in terms of the weight assigned to the visual modality in the audio-visual classifier.

2. POSE-INVARIENT LIPREADING
The techniques proposed for pose-invariant face recognition can be classified into viewpoint transform and coefficient-based techniques [5]. The coefficient based approach estimates the face under all viewpoints given a single view by defining pose-invariant features [9]. On the other hand, viewpoint transform approaches use a face recognition system designed for the dominant view (frontal) and include a pre-processing step transforming the input images of undesired (non-frontal) poses to the desired view [5]. The same two strategies can be applied to the lipreading task. We adopt the viewpoint transform approach because lipreading predominantly takes place with frontal views and coefficient-based techniques would benefit only a small fraction of time from pose-invariant features, while a system optimized for frontal views suits most of the time the working conditions.

Essentially there are two strategies to generate virtual frontal views from non-frontal poses: 3-Dimensional (3D) models [6] and learning-based methods [2, 18]. In the first case, a 3D morphable model of the face must be built from 2D images before virtual views from any viewpoint can be generated. It is computationally expensive and time consuming to match the input 2D image with the 3D model and, therefore, that technique is not aimed to most real-world applications. To overcome that issue, learning-based approaches learn how to estimate virtual views directly in the 2D domain, either via a 2D face model or from the images themselves. Several reasons favour last strategy in face recognition [5, 7] and justify the use of LR to project the images from lateral to frontal views in AV-ASR. First, most lipreading systems use directly images of the mouth as visual features and do not require mouth or lip models, which we do not want to introduce for the pose normalization step [15]. Secondly, the visual features extracted from the images themselves are more informative than features based on lip-modelling, as they include additional information about other speech articulators such as teeth, tongue and jaws also useful in human speech perception [17]. However, the proposed pose normalization involves transforms that can be quickly computed and allow real-time implementations. Finally, appearance based features directly obtained from the image pixels are generic and can be applied to mouths of any viewpoint compared to lip models which have to be developed for any possible view.

Linear regression has been applied to visual speech recognition

1 This work is supported by the Swiss SNF grant number 200021-130152.
2 Visual ASR or lipreading and Audio-Visual ASR systems share the same visual feature extraction and differ only on the statistical models used for classification, which are a combination of the audio and visual models used in single modality ASR. On the following, to avoid confusion, we refer to their common visual feature extraction and speech modelling blocks as lipreading system.
to project the visual speech features extracted from complete profile images to the frontal feature space [11–13]. We propose to extend these works in several ways. First, we analyse the performance of LR for different intermediate poses between fully frontal and fully profile views, we study the influence of applying LR on the images themselves or to different features spaces involved in the speech recognition system, see figure 1, and we finally propose a local version of LR and compare it to previous techniques.

Let’s recall first the basics of linear regression. Given a set of \(M \) training examples of the undesired viewpoint \(Y = [y_1, \ldots, y_M] \) and their synchronous examples on the target viewpoint \(X = [x_1, \ldots, x_M] \), a matrix \(W \) performing LR is determined minimizing the cost function

\[
Q(W) = \sum_{i=1}^{M} ||x_i - Wy_i||^2 + \beta ||W||^2,
\]

which measures the mean square error on the training dataset and might include a Tikhonov regularization term (weighted by parameter \(\beta \)) introducing additional smoothness properties and leading to a Ridge Regression [4]. The well-known solution to the LR is given by

\[
W = YY^T (YY^T + \beta I)^{-1},
\]

with \(I \) the identity matrix.

Linear regression is theoretically justified when images of the same object but from different poses are subject to the same identity. In the case of face recognition, if the face images are well aligned, there exists an approximate linear mapping \(x \rightarrow y \). In the case of face recognition, if the face images are well aligned, there exists an approximate linear mapping \(x \rightarrow y \).

The visual features \(X_F, Y_T \) are the first coefficients of the two-dimensional Discrete Cosine Transform (DCT) of the image following the zigzag order, which provide a smooth, compact and low dimensional representation of the mouth. Note that the selected DCT can be obtained as a linear transform of the image \(X_F, Y_T \) and there is then an approximate linear mapping between the DCT coefficients of the frontal and lateral images. The linear relationship, however, no longer holds when we consider only a reduced set of DCT coefficients (first 140 coefficients out of 4096) and the transform \(W^F \) is only an approximation of the non-linear mapping existing between any pair of reduced DCT coefficients. In that case, selecting the DCT features corresponding to lower frequencies to compute the transform \(W^F \) corresponds to smoothing the images previous to the projection and estimating a linear transform forcing the projected virtual image to be smooth by having only low-frequency components. Moreover, the lower-dimensionality of \(X_F, Y_T \) compared to \(X_I, Y_I \) improves accuracy of the LR matrix estimation due to the Curse of Dimensionality [1]. In that sense, the effect of the regularization parameter \(\beta \) is more important in the estimation of \(W^F \) than \(W^T \). Here, the LLR technique provides a different meaning to the patches, namely frequency bands. If we choose the patches to be adjacent blocks of the DCT coefficients, we are considering different transforms for different frequency components of the image. With no additional information, we choose an equal partition of the selected DCT coefficients to define the frontal and associated lateral patches in the LLR transform.

Another option to apply pose normalization, is to project the final features \(X_S, Y_L \) used in the pattern classifier. Those features are obtained from linear dimensionality reduction transforms aimed at speech classification [15]. The transforms are usually based on Linear Discriminant Analysis (LDA), which is a supervised transform projecting the DCT features \(x_D, y_D \) to the linear subspace maximizing the separability of the \(C \) speech classes. Specifically, LDA finds the \(K \)-dimensional linear subspace maximizing the projected ratio \(R = S_w^{-1}S_B \) between the between-class scatter matrix \(S_B \) and within-class scatter matrix \(S_w \), defined as

\[
S_w = \sum_{i=1}^{C} p_i \Sigma_i, \quad S_B = \sum_{i=1}^{C} p_i (\mu_i - \mu) (\mu_i - \mu)^T, \tag{2}
\]

where \(p_i \) is the percentage of samples on the training set belonging to the class \(i \), \(\mu_i \) and \(\Sigma_i \) are the mean and covariance matrix for those samples and \(\mu \) is the mean value of all the training samples in the dataset. The LDA projection matrix is then defined by the eigenvectors of \(R \) with \(K \) largest associated eigenvalues. If there is a linear mapping between the original features \(x = W y \), we can also relate the corresponding LDA projections with a linear mapping observing that if \(y \) is an eigenvector of \(R^L \) with eigenvalue \(\lambda_L \), then \(W^{-1} y \) is an eigenvector of \(R^F \) with the same eigenvalue. Two extra considerations have to be taken into account for the projection of the \(X_L \) and \(Y_L \) features. First, \(X_L \) and \(Y_L \) are obtained by applying LDA into the reduced DCT features \(X_F, Y_T \), which means that the projection by \(W^L \) is only a linear approximation of the real mapping between the LDA features in the same way \(W^F \) linearly representation in the frequency domain. Afterwards, those features are transformed and their dimensionality anew reduced in order to contain only information relevant for speech classification, leading to the vectors \(X_L, Y_L \) used in the posterior speech classifier. For more details about features used in lipreading, we refer the reader to [14].

Figure 1: Lipreading system and feature spaces where pose-normalization is applied: 1 for images, 2 for DCT and 3 for LDA.
approximates the relation between X_F and Y_F. Second, two stages of LDA are needed to obtain X_L and Y_L from X_F and Y_F, a first intra-frame LDA and then an inter-frame LDA on concatenated adjacent vectors extracted from the intra-frame LDA. It is easy to prove that the linear relationship still holds if we consider now the transform on concatenated adjacent vectors of X_F and Y_F. We can then justify the use of LR to estimate the transform between the LDA feature spaces associated to different poses, which was missing up to the moment [11–13]. Observe that applying the pose normalization on the original images, or even to the low-frequency DCT coefficients, is independent of the features we posteriorly use for speech recognition and could be adopted with other visual speech features. The use of the LDA features, however, is specific to the speech recognition system and involves an additional training of LDA projections for the different poses. In that sense, applying the LR techniques to the original images provides a more general strategy for the multipose problem, while projection of LDA features might be able to exploit their specificity for the speech recognition task.

3. SPEECH RECOGNITION SYSTEM

Our lipreading system is composed of three blocks: the mouth detection and extraction, visual feature transformation and speech classification. For Audio-Visual ASR we have also the corresponding audio feature extraction, while the audio and visual fusion takes place in the classifier by means of a weighted multi-stream Hidden Markov Model (HMM). In our experiments we assume the pose to be known and introduce a pose normalization block. When the transformations are applied directly to the image space, the pose normalization takes place after the mouth extraction, whereas for the DCT or LDA features the transformation is introduced after the corresponding feature transform block.

For the audio modality, the system includes a state-of-the-art audio feature extraction block, where 13 Mel Frequency Cepstral Coefficients (MFCC) are extracted at an audio rate of 100 Hz with a 25 ms Hamming window. We append then their first and second time derivatives to include dynamic information and remove their means by Cepstral Mean Subtraction [8].

The first block of our visual system extracts images of the speaker’s mouth from the original videos. It defines a mouth region-of-interest (ROI), which is then scaled in size, centred and rotated in order to obtain normalized mouth images for the different speakers, from which the visual speech features are afterwards extracted. Extraction of the mouth ROI constitutes part of the face tracking task and it is not a problem generally studied in lipreading. To that purpose, we work with sequences where the speaker wears blue lipstick and we can accurately track the mouth by color information in the hue domain. For each frame we estimate the position of the lips, the center and corners of the mouth, excluding outliers for the estimated positions over a sequence. Finally, a sequence of normalized 64x64 pixels ROIs centered on the mouth is extracted. On the following, we designate as F and L-sequences the obtained sequences for frontal and lateral poses at 30°, 60° and 90° of head rotation, which correspond to the previous x_F and y_F image vectors. Next, the system obtains a compact low-dimensional representation of the image x_F, y_F by extracting its first 140 DCT coefficients in zig-zag order. To normalize the features for different speakers, we remove their mean value over the sequence with the equivalent technique to the Cepstral Mean Subtraction. Finally, the LDA transforms are applied to further reduce the dimensionality of the features and adapt them to the posterior HMM classifier. First, intra-frame LDA reduces to 40 the dimensionality of the features while retaining information about the speech classes of interest, phonemes in our case. Afterwards, inter-frame LDA incorporates dynamic information useful in speech recognition by concatenating 5 intra-frame LDA vectors over adjacent frames and projecting them via LDA to the final features x_L, y_L, which have dimension 39 and will be modelled by the HMMs. The size of the selected DCT coefficients, inter and intra-frame LDA parameters are chosen based on experiments with an evaluation dataset to optimize speech recognition.

For the audio-visual classification, the system uses multi-stream HMMs [16] to combine both audio and visual streams. Weighted multi-stream HMMs are the natural extension of HMMs when two independent feature streams are defined as observations. They introduce stream weights λ_A, λ_V, to control their joint audio-visual observation model associated to the HMM state variable q by $p(o_{AV}|q) = p(o_A|q)^{\lambda_A} p(o_V|q)^{\lambda_V}$. To keep the same relationship between emission and transition probabilities as in single-stream HMMs, the weights are usually forced to sum-up to one and their value is proportional to the reliability associated to each stream for speech recognition. In order to quantify the loss of performance associated to each view, the same kind of visual classifiers is trained for each possible pose: frontal (abbreviated as F-class) and lateral at 30°, 60° and 90° of head rotation (L-class).

4. EXPERIMENTAL RESULTS

We perform connected speech recognition experiments under different speaker poses relative to the camera. To train and test the different methods we apply the multi-speaker paradigm (all speakers are on train and test set but with different sequences) with three fold cross-validation and give the results in terms of word accuracy. The same multi-speaker cross-validation is used to estimate the LR transforms for the different poses and features. We used the HTK tool-kit [19] to implement three-state phoneme HMMs with a mixture of three Gaussians per state. For the multi-stream HMMs, the same number of states and Gaussians than in single-stream case was used. The model parameters were initialized with the values estimated for independent audio and visual HMMs and posteriorly re-estimated jointly with four iterations of the expectation maximization algorithm. We considered the audio and visual weights fixed parameters of the system, restrict them to sum up to one and choose the weights leading to best speech recognition on an evaluation dataset.

4.1 Database

For our experiments we required speech recordings with constrained non-ideal visual conditions, namely, fixed known poses and natural lighting. To that purpose we recorded our own database (available on our webpage), consisting of recordings of 20 native French speakers with simultaneously different views, one always frontal to the speaker and the other with different lateral poses.

The recordings involve one frontal camera plus one camera rotated 30°, 60° and 90° relative to the speaker in order to obtain two simultaneous views of each sequence, see figure 2. The first camera was fixed with a frontal view, while the second camera provided different lateral views. For each possible position of the second camera, the speaker repeated three times the digits, giving a total of 3x3 couples of repetitions of each digit: 9 for frontal views and 3 laterals at 30°, 60° and 90° of head rotation. To comply with the natural conditions, the corpus was recorded without paying much attention to the lighting conditions, which resulted in shadows on some images under the nose and mouth of the subjects. The videos were recorded with two high-definition cameras CANON VIXIA HG20, providing 1920x1080 pixels resolution at 25 frames per second, and included
the head and shoulders of the speaker. In terms of audio set-up, two different micros were used for the recordings, an external micro close to the speaker’s mouth, without occluding its view, and the built-in micro of the second camera. Audio was recorded with a sample rate of 48000 Hz and 256 kbps for both micros, but only the clean audio signal obtained with the external microphone (Sony F-V120) was posteriorly used in the audio-visual experiments. We synchronized the videos from the audio signal because it offered better time resolution than a pairing of the video frames. For the two audio signals we computed the correlation of their normalized MFCC features within each manually segmented word, we then estimated a delay for each word and averaged over the whole sequence in order to obtain the delay between audio signals with a resolution of 10 milliseconds. The same delay was considered for the video signals, after correcting for the difference in distance between the two micros and the speaker. The word labelling of the sequences was done manually at the millisecond and phone labels were posteriorly obtained by force alignment of the clean audio signals with the known transcriptions.

4.2 Visual Speech Recognition

In a first set on experiments we paired the frontal and lateral sequences and test each sequence with the corresponding system, i.e F-sequences with F-classifier and, for each possible head rotation, the L-sequences with their L-classifier. That gives us a measure of how visual speech degrades with the different poses, presented in column “Baseline” from table 1. As expected, speech recognition deteriorates with non-frontal speaker poses, which of course is more acute for 90°(10% of loss of performance) than for 60°(5% of loss of performance). It is interesting to note that there is no statistically significant loss of performance between the frontal and the lateral sequences for 30° of head rotation. We also present the performance of the F-classifier tested with the L-sequences when no pose normalization is applied, i.e., there is a mismatch on the train/test conditions in terms of pose and so the system performs poorly, with mean word accuracy dropping from around 70% to 20%. Finally, we test the different pose normalization techniques with the L-sequences on the classifier trained and optimized for frontal sequences (“F-class, L-sequences” in table 1). In that sense, we should not only compare the results of the pose-normalized L-sequences to the corresponding F-sequences with the F-classifier, but also to the performance of the lateral views when tested on their L-classifier. The results of F-sequences on F-classifier represent the best we can hope in terms of original pose and trained system while the results of L-sequences on L-classifier represent the best we can do when the original images present a non-frontal pose with a lipreading system adapted to it.

For each possible feature space, we choose the best-performing LR technique: LLR on the images split in 32x32 pixel patches with 75% overlapping, $\beta = 15$ and GLR on the selected DCT and LDA features with $\beta = 5$ and 0 respectively. As expected, the features obtained after the pose normalization can neither beat the schema F-sequences on F-classifier, because there is a loss of valuable information in the non-frontal images, nor obtain the performance of L-sequences on L-classifier, due to the limitations of the pose normalization techniques. For the different poses, the projected LDA features clearly outperform the other techniques (between 3% to 12% of loss of accuracy for the different poses compared to F-sequences), making use of the specificity of the features for speech recognition compared to the more general image or DCT feature spaces (accuracy loss 26% to 37%). The fact that the original images and the selected DCT coefficients present similar performance with different LR techniques and regularization parameter β is justified by the LR training stage and the effects of misalignment on

The curse of dimensionality states that, with a limited amount of training data, we are only able to accurately estimate the values of the LR transform up to a certain dimensionality. Consequently, the LLR technique applied to the images outperforms the GLR not only because it reduces the effects of misalignment on the images, but also because it can more accurately estimate the values of the linear transforms in a feature space of the size of the patches instead of the image. In terms of speech recognition it is in fact equivalent working on the high-dimensional image space with the local version of LR to applying the GLR on the reduced DCT space, essentially because any improvement on the virtual views obtained in the LLR projection of images is lost on their posterior projection to the reduced DCT space. Comparing the different LR techniques applied to the different spaces, we see that LLR performs better than GLR only for the original images, where the assumption of a piece-wise linear mapping can be related to images patches containing different parts of the mouth. For the DCT, however, the patches correspond to high and low-frequency components of the images and only a linear transform between the low-frequency components of the images can be justified, while that assumption does not hold for the high-frequency components associated to image details. In the case of intra-inter LDA features there is no interpretation of the patches defined on the LLR technique and the GLR and LLR techniques perform similarly.

4.3 Audio-Visual Speech Recognition

We study how pose variations influence audio-visual ASR systems. Since the visual stream is most useful when the audio signal is corrupted, we report audio-visual experiments with a noisy audio signal and compare it to an audio-only ASR system. To that purpose we artificially added babble noise to the clean audio signal with 7 dB and 0 dB of Signal-to-Noise Ratio (SNR). The audio HMM parameters were trained on clean audio data, but the corrupted signals were used for testing.

Table 2 show the performance for the audio-visual system for frontal and lateral poses. The lipreading block of the audio-visual system correspond to the same sequences and classifiers used in lipreading experiments. The performance of the different streams is coherent with the visual-only experiments, with frontal views outperforming lateral ones and GLR on the DTA space clearly improving upon the other pose normalization methods. Note that the absolute difference in performance between the different visual streams is now reduced. In an audio-visual system, the weight assigned to the visual stream controls to which extend the classifier’s decision is based on the visual features and, therefore, differences between visual streams are more evident when the weights assigned to the video is high. Consequently, the differences in performance of the pose normalization methods are more acute with 0 dB than 7 dB audio SNR. Observe, for instance, how at 7 dB the LR technique applied to the DTA features gives the same performance than the original L-sequences with a L-classifier, but for different values of the video weight. Notice also that the LR projection techniques applied to the original images or the selected DCT coefficients are only able to improve audio recognition when the audio signal is highly corrupted (0 dB), while the projection on the DTA space always ameliorates the recognition of the audio system. The LR

<table>
<thead>
<tr>
<th>Head pose</th>
<th>Baseline F-sequences</th>
<th>Baseline L-sequences</th>
<th>F-class L-sequences</th>
</tr>
</thead>
<tbody>
<tr>
<td>30°</td>
<td>70.2</td>
<td>70.8</td>
<td>21.3</td>
</tr>
<tr>
<td>60°</td>
<td>72.3</td>
<td>67.3</td>
<td>23.5</td>
</tr>
<tr>
<td>90°</td>
<td>70.7</td>
<td>60.0</td>
<td>20.0</td>
</tr>
</tbody>
</table>

Table 1: Lipreading word accuracy (%) with different visual streams and classifiers. Comparison to Baseline quantifies the loss of associated to each pose-normalization technique and different levels of head rotation.

2Statistical analysis following [3] was performed for all the experiments but it is not included in the results due to space restrictions. However, when we mention that systems are equivalent or have the same performance, it is because the differences of performance across the different train/test sets and speakers are not statistically significant.
results for the images and DCT coefficients at 7 dB point out the fact those techniques are not useful for speech recognition and only increase the confusion of the audio classifier. We also analyse the

<table>
<thead>
<tr>
<th>Lipreading system</th>
<th>0 dB audio SNR</th>
<th>7 dB audio SNR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30° 60° 90°</td>
<td>30° 60° 90°</td>
</tr>
<tr>
<td>audio-only</td>
<td>36.5 37.0 36.2</td>
<td>64.2 67.5 67.3</td>
</tr>
<tr>
<td>F-seq F-class</td>
<td>71.5 78.3 70.3</td>
<td>78.2 84.6 79.7</td>
</tr>
<tr>
<td>L-seq L-class</td>
<td>72.0 71.7 64.3</td>
<td>78.5 79.7 74.8</td>
</tr>
<tr>
<td>LR images</td>
<td>44.7 46.5 37.3</td>
<td>56.0 56.1 46.8</td>
</tr>
<tr>
<td>LR DCT</td>
<td>44.9 46.5 37.5</td>
<td>57.2 56.3 48.7</td>
</tr>
<tr>
<td>LR LDA</td>
<td>68.3 72.0 65.8</td>
<td>77.0 77.7 75.6</td>
</tr>
</tbody>
</table>

Table 2: Word accuracy (%) for audio and audio-visual systems with different visual streams and classifiers.

value of the video weight λ_v assigned to the different sequences and pose normalization techniques and relate it to their performance in lipreading experiments. The weights assigned to the visual stream are presented in table 3, where we observe that, as expected, the weight given to the visual modality decreases with the quality associated to the visual stream. For the frontal view sequences λ_v takes higher values than for the lateral ones. Similarly, the projected L-sequences with the L-classifier have higher weights than the pose-normalized L-sequences when tested on a frontal classifier and the values for 90° of head rotation are lower than for 30°. In fact, there is a clear correlation between the values of the optimal visual weight and the stream’s performance in lipreading experiments, as presented in figure 3. This figure shows that we can derive the optimal visual weight for each pose-normalization from its lipreading performance. Consequently, improvements in the visual lipreading system can be directly mapped to the corresponding audio-visual system by means of the weight associated to the visual stream.

<table>
<thead>
<tr>
<th>λ_v</th>
<th>0 dB audio SNR</th>
<th>7 dB audio SNR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30° 60° 90°</td>
<td>30° 60° 90°</td>
</tr>
<tr>
<td>F-seq F-class</td>
<td>0.67 0.72 0.70</td>
<td>0.6 0.57 0.57</td>
</tr>
<tr>
<td>L-seq L-class</td>
<td>0.68 0.58 0.65</td>
<td>0.52 0.53 0.47</td>
</tr>
<tr>
<td>LR images</td>
<td>0.45 0.45 0.20</td>
<td>0.28 0.28 0.18</td>
</tr>
<tr>
<td>LR DCT</td>
<td>0.52 0.38 0.18</td>
<td>0.27 0.28 0.22</td>
</tr>
<tr>
<td>LR LDA</td>
<td>0.68 0.63 0.63</td>
<td>0.48 0.47 0.40</td>
</tr>
</tbody>
</table>

Table 3: Optimal video weight in the audio-visual systems with different visual streams and classifiers.

5. CONCLUSIONS

In this paper we presented a lipreading system able to recognize speech from different views of the speaker. We rely on pose normalization techniques used in face recognition to generate virtual frontal views of the speaker’s mouth, or the corresponding speech features, from non-frontal images. Our experiments show that the pose normalization is more successful when applied directly to the LDA features used for speech recognition, while the more general feature spaces defined by the images themselves or their low-frequency representation suffer from misalignments of the training data or the estimation of the linear regression projection. We also study the integration of such a lipreading system into an audio-visual speech recognizer, quantifying the loss of performance related to pose changes and normalization techniques and how the weighting associated to the visual stream should account for it. The results obtained with the audio-visual system are coherent with the ones obtained in lipreading and, thus, any improvement obtained in the visual-only domain for pose normalization can be transferred into the audio-visual task by adapting the weight of the visual stream in the audio-visual classifier.

REFERENCES