BLIND CHANNEL SHORTENING OF ADSL CHANNELS WITH A SINGLE-CHANNEL LINEAR PREDICTOR

W. G. Dalzell and C. F. N. Cowan

Digital Communications Research Group, ECIT, Queen’s University of Belfast,
Queen’s Road, Belfast, BT3 9DT, UK
phone: +(44) 28 9097 1700, fax: +(44) 28 9097 1702, email: gdalzell01@qub.ac.uk, c.cowan@ecit.qub.ac.uk
web: http://www.ecit.qub.ac.uk/

ABSTRACT

Equalization of non-stationary communication channels is preferably blind, to minimise overheads that reduce data throughput, and adaptive so as to track the channel characteristic. In this paper we consider the use of a single-channel linear predictor as an equalizer for multi-carrier modulated (MCM) signals. The MCM method with its cyclic-prefix has a level of tolerance for inter-symbol interference. We show that despite an intrinsic minimum-phase characteristic, the predictor can equalize mixed-phase ADSL test channels satisfactorily. We also show that by increasing the predictor delay, channel-shortening may be explicitly introduced, and that use of this version of the predictor improves equalization performance at higher channel noise levels. Minimising computation loads of blind equalization algorithms is also desirable. The predictor has significantly lower computational load than other blind equalization schemes, though at a cost of lower convergence speed. There is potential for faster adaptation while retaining a lower computational load than other schemes.

1. INTRODUCTION

Blind channel equalization refers to equalization of a communications channel without knowledge of the transmitted data content. The ability to equalize without knowing the data removes the requirement for training sequences within the data. This increases the efficiency of the data transfer, particularly of non-stationary channels where the equalization must be periodical or adaptively updated.

Instead of knowledge of the data, blind equalization techniques use knowledge of some general characteristic or property of the expected signal, such as the signal format or a statistical parameter, to equalize the channel. The term “property-restoral” is often used to describe this action. For example, the constant modulus algorithm (CMA) expects a constant modulus in a QPSK-modulated signal, and adjusts an equalizer to restore this property to a received signal.

Multi-Carrier Modulation (MCM) is a scheme that simultaneously transmits multiple “sub-carriers” of orthogonal frequencies within the transmitted signal. It is in wide operational use, being the modulation scheme used by, for example, Digital Subscriber Line (DSL), Digital Audio Broadcasting (DAB) and IEEE802.11 “Wi-Fi”. MCM is capable of tolerating a limited degree of inter-symbol interference (ISI) due to its inclusion of a Cyclic Prefix (CP) between symbols, though if the channel impulse response length exceeds the CP length, ISI will begin to degrade the transmission. This has an important implication for MCM signal equalization. The channel impulse response need only be reduced in length —i.e. “shortened”— to the length of the CP.

Relevant examples of blind channel-shortening methods for MCM are Sum-squared Auto-correlation Minimization (SAM) [1], Partial Update SAM [2] and Lag-hopping SAM [3]. These explicitly restore the low-autocorrelation property of MCM signals. The basic SAM algorithm [1] has high computational complexity requiring typically several thousand multiply-accumulate operations per signal sample; the two latter methods aim to reduce its complexity.

A Linear Predictor may be used for equalization, as it operates by minimising autocorrelation. For example, it is used as part of an acoustic equalization scheme in [4]. It has the important drawback however that, when in forward predictor form, it always produces minimum-phase zeros [5]; this makes it incapable of equalizing maximum-phase poles, and thus of fully equalizing mixed-phase channels.

A more complex oversampling version of the linear predictor for equalization, exploiting cyclostationarity, has been proposed in [6]. The intention is to allow phase information to be retained by the equalizer and thus allow the predictor to equalize mixed-phase channels. (It is interesting though to note in [8] that an oversampling linear-predictor exhibits inferior performance for a non-minimum phase channel.) In [7] a hybrid form using both predictor and Subspace methods is proposed. However, the cyclostationarity methods are computationally complex, and are not included here.

In this paper we propose a novel, simple, adjustment to the single channel linear predictor that makes it operate as a channel-shortener. We examine the performance of the predictor in equalizer and shortener forms for high and low signal-to-noise ratio scenarios. Mixed-phase ADSL test channels, chosen to allow comparison with earlier research such as in [1].

In sections 2 and 3 we describe the linear predictor as an equalizer and as a channel-shortener, then in section 4 the system model and test model. In section 5 we show the modelled results and in section 6, conclusions.

2. THE LINEAR PREDICTOR

The Linear Predictor is an algorithm that predicts the value of a sample of a sequence from a linear combination of the other samples. Typically, a Forward Linear Predictor (FLP), as shown in Figure 1, will predict the most recent sample of the sequence from older samples. The coefficients of the combination are obtained by comparison of the actual value and the predicted value.
minimising the mean-square of the mean-square of the channel, may be obtained using the steepest-descent method or related according to the impulse response of the Levinson-Durbin algorithm. The predicted value of the prediction-error filter, particularly since it has a low computational cost when the LMS adaptation is used. In the case of the ADSL test channels—mixed-phase but in the main minimum-phase—it is plausible that most of the channel will be equalized, leaving an acceptable residual.

3. CHANNEL-SHORTENING LINEAR PREDICTOR

Modifying the linear predictor so that it predicts D samples (rather than 1 sample) into the future has the effect of changing the associated prediction-error filter from a channel equalizer to a channel-shortener. Consider the predicted value of \(x(n), \hat{x}(n)\), given by:

\[
\hat{x}(n) = - \sum_{k=D}^{L} a_p(k)x(n-k)
\]

and the prediction error \(f_p(n)\):

\[
f_p(n) = x(n) - \hat{x}(n) = x(n) + \sum_{k=D}^{L} a_p(k)x(n-k)
\]

(The above syntax is taken from [5].)

A static solution to the coefficients may be obtained by minimising the mean-square of \(f_p(n)\); a set of normal equations is obtained from sample data, and solved using a method such as the Levenson-Durbin algorithm.

An adaptive solution, more appropriate to a non-stationary channel, may be obtained using the steepest-descent method or the least-mean-squares (LMS) method. Both methods minimise the mean-square of \(f_p(n)\). The LMS method is used here.

Minimising the mean-square of \(f_p(n)\) implies minimising the correlation between samples of the \(f_p(n)\) sequence. The predicted sequence \(\hat{x}(n)\) may be considered as that part of the signal \(x(n)\) that is correlated with the earlier samples, and hence is predictable. Thus, \(f_p(n)\) is \(x(n)\) with correlated terms removed.

This then is applicable to channel equalization. If an independent and identically distributed (i.i.d) data sequence \(d(n)\) is passed through a channel \(h\), its output \(x(n)\) becomes autocorrelated according to the impulse response of \(h\). The linear prediction function, where the output is \(f_p(n)\), will remove the autocorrelation of \(x(n)\); with an important qualification, this may be seen as an equalizer of \(h\). In this mode, where the prediction error signal \(f_p(n)\) is also the system output, the predictor is called a Prediction-Error Filter.

The characteristics of the linear predictor are well-understood, [5]. Two will be mentioned here. First, the adaptation algorithm relies on minimising autocorrelation within \(x(n)\). It is thus prone to adapt the filter to false zeros in the z-plane, that minimise autocorrelation but do not equalize the channel. (This is the “zero-flipping” phenomenon described in [9].) Second, the zeros of a forward linear predictor will be minimum-phase; similarly the zeros of backward linear predictor (BLP) will be maximum-phase [5]. The consequence of these two characteristics is that a prediction-error filter will be unable to fully equalize a mixed-phase channel; an FLP will introduce minimum-phase zeros where there should be maximum-phase zeros, and a BLP will introduce maximum-phase zeros where there should be minimum-phase zeros.

Nonetheless, it is worthwhile examining the equalization behaviour of a prediction-error filter, particularly since it has a low computational cost when the LMS adaptation is used. In the case of the ADSL test channels—mixed-phase but in the main minimum-phase—it is plausible that most of the channel will be equalized, leaving an acceptable residual.

4. SYSTEM MODEL AND SIMULATION

The system model is shown in Figure 2. The transmission channel \(h\) is represented as a linear finite impulse-response (FIR) filter of length \(L_h + 1\), and the channel-shortener \(w\) is an FIR filter of length \(L_w + 1\). The input signal \(d(n)\) represents the MCM-modulated signal. The added noise \(v(n)\) is uncorrelated with the channel output, is zero-mean and independent and identically distributed (i.i.d). All signals are modelled here as real.
Adapting and executing the filter using the steepest-descent method has a computational load of the order of $2L_w^2$ multiply-accumulate (MAC) operations per sample, whereas the LMS method requires about $3L_w$ MAC operations per sample. This vector is adaptively updated in the LMS manner to stochastically minimise the mean-square of $y(n)$, as:

$$w_{p,n+1} = w_{p,n} + 2\mu y(n)x(n-1)$$

where $y(n)$ is both the predictor error and the filter output, and μ is the adaptation coefficient, and $x(n)$ is the input vector.

The delayed prediction-error filter was also tested on all the test channels. The algorithms were executed on all 8 test channels; results are compared against the SAM algorithm [1]. The tests were executed for SNR values of 20dB and 45dB, for scenario lengths of 120 symbols. Achievable Bit-Rate and convergence time are the main outcomes monitored.

Results are shown here for Channel 3, Figure 3 shows the convergence of the ABR for Channel 3 being equalized by the basic FLP, for scenario SNRs of 45dB and 20dB. The Matched-Filter Bound (MFB) for the channel is included for comparison. Equivalent results for the SAM algorithm are shown in Figure 5.

5. SIMULATION TESTS AND RESULTS

The effectiveness of the Forward Linear Predictor (in Prediction-Error Filter form) as an equalizer was tested on the 8 test channels. The filter length was 16 taps (including the initial fixed tap), and the adaptation coefficient μ was set to 0.01; these parameters being empirically chosen to provide effective performance over the SNR range.

The delayed prediction-error filter was also tested on all the test channels. The results shown here are for $D = 17$ taps, that is, 16 taps are forced to 0. The number of active filter taps (including the initial fixed tap) is 24. The adaptation coefficient μ was set to 0.003. It was observed that a delay (D) of 32—the length of the signal CP—produced very poor results, as the minimum-phase channel components were shortened to 32 samples, and the additional maximum-phase components then lengthened the effective channel to greater than 32 samples, i.e. longer than the guard interval.

The main measure of performance is Achievable Bit-Rate (ABR) rather than Bit-Error Rate, since MCM signals typically adapt the bit-rate to that which is achievable given the SNR of the current channel. ABR is evaluated as in [1].

The input data to the receiver, $x(n)$, and $y(n)$, the output of the channel-shortener w, are given by:

$$x(n) = \sum_{k=0}^{L_w} h(k)d(n - k) + v(n)$$

$$y(n) = \sum_{k=0}^{L_w} w(k)x(n - k)$$

The effective channel e is obtained by the discrete convolution of h and w, i.e. $e = h * w$; of length $L_e = L_w + L_c$.

Since w is a prediction-error filter, then:

$$y(n) = x(n) + \sum_{k=1}^{L_w} w(k)x(n - k)$$

The delayed prediction error filter is updated in the same way, with the addition that the initial $D-1$ elements of w_p are always 0.

The delayed prediction-error filter was also tested on all the test channels. The algorithms were executed on all 8 test channels; results are shown here for Channel 3, Figure 3 shows the convergence of the ABR for Channel 3 being equalized by the basic FLP, for scenario SNRs of 45dB and 20dB. The Matched-Filter Bound (MFB) for the channel is included for comparison. Equivalent results for the SAM algorithm are shown in Figure 5.

(Note that there are 544 samples in a Symbol, and 10^5 samples is approximately 18 Symbols.)
The impulse responses (IRs) of the channel, the equalized channel and the equalizer are shown in Figure 4 for the 45dB scenario. The equalized channel IR has not reduced to a single spike, but to the minimum-length impulse response possible where the mixed-phase channel is equalized by a minimum-phase filter.

Figure 5 shows the ABR convergence and Figure 7 the IRs for the Delayed FLP (DFLP), the channel-shortening version of the FLP. It can be seen that the shortened channel IR and the channel IR are coincident for the first 17 taps, after which the shortened channel IR energy falls to near-zero.
The limitation that a forward linear predictor always has minimum-phase zeros (and conversely, maximum-phase zeros for a backward predictor) remains, so that an FLP or DFLP cannot fully equalize a mixed-phase channel. But for schemes such as MCM that can tolerate a limited amount of ISL, this work demonstrates that the predictor can act as an effective blind equalizer while only equalizing minimum-phase channel components. There is potential for the use of the predictor to be explored for other mixed-phase channels, such as wireless channels.

Acknowledgements: This work is funded by the Northern Ireland Department for Employment and Learning (DEL).

7. REFERENCES