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ABSTRACT
We derive three novel data-aided CFO estimators based
on a new autocorrelation function which is defined us-
ing cyclostationary properties of the repetitive pream-
ble. The first estimator is a generalization of a classic
estimator, and the other two take advantage of the struc-
ture of the new autocorrelation function to improve the
estimation for low CFO. In addition, the performance of
the proposed schemes is studied using simulations and
compared with classical implementations. Comparing
to the state-of-the-art CFO estimators, the proposed al-
gorithms improve the performance, in terms of mean-
squared error (MSE), by 6 % at an SNR of 2 dB and by
100 % at an SNR of -5dB.

1. INTRODUCTION

Initial time and carrier frequency offset (CFO) estima-
tion are important tasks in every communication sys-
tem. In particular, OFDM is sensitive to CFO as shown
in [1].

CFO estimators can be generally divided into data-
aided (DA), and non-data-aided (NDA) or blind estima-
tors. DA estimators make use of a frame structure that
typically includes a preamble or pilots to perform time
and/or frequency synchronization [2, 3, 4]. The NDA es-
timators, on the other hand, exploit the available statis-
tical information of the transmitted and received signals
to perform the estimation.

Although NDA estimators are bandwidth efficient,
they require large amount of data in general. Therefore,
they are not appropriate for acquisition, because pro-
cessing a large number of samples would require longer
time than DA techniques [5, 6]. Advanced wireless com-
munication systems for frequency selective channels gen-
erally employ DA synchronization [6, 5, 7]. Therefore,
development of DA estimators for initial synchroniza-
tion remains an important topic. Avoiding the high
complexity of maximum likelihood estimators (MLE),
suboptimal DA estimators typically employ a training
sequence (TS) divided into J identical parts. These so-
lutions are based on the autocorrelation function which
provides J − 1 lags. In [2] an estimator is derived that
employs two TSs. Later in [8], Morelli and Mengali pro-
posed an improved estimator, the Morelli and Mengali

∗ This work is partially supported by CONICET (PIP
112-200801-01024), ANPCyT (PICT 2008-0182) and Univer-
sidad Nacional del Sur (PGI #24/K043). Contact email:
ggonzalez@uns.edu.ar.

� This work was partially funded by the Centre of Excel-
lence in Smart Radios and Wireless Research (SMARAD) and
the Academy of Finland.

(MM) estimator, that uses only one TS with a repetitive
pattern. To avoid a range loss, the algorithm combines
constant phase differences using the best linear unbi-
ased estimator (BLUE) to obtain the CFO. The MM
estimator is not able to exploit the information of au-
tocorrelation (AC) lags greater than J/2. This fact de-
grades the performance of the algorithm. In [9], Minn
(MTB) proposes a two-step procedure to remedy that.
First, a large-range coarse CFO estimation is subtracted
from the received data to obtain a low-range residual un-
known CFO. Then, a BLUE combines the information
of the J − 1 AC lags in order to obtain the residual
CFO. As shown in the following sections, despite that
this strategy allows the use of the information associ-
ated to all autocorrelation lags, the performance for low
SNRs can be improved considerably.

This paper presents three novel CFO estimators
based on the cyclostationary properties of the periodic
TS. This new approach introduces a generalization of
the classical AC, named averaged cyclic autocorrelation
(ACA), which is statistically different from AC and leads
to novel approximations. The first estimator is a refor-
mulation of MM algorithm which is able to employ the
J − 1 correlation lags. The other two, take advantage
of the ACA formulation to perform an accurate CFO
estimation of low range, using the BLUE.

This work is organized as follows. Section 2 intro-
duces the signal model and the notation used in the
paper. MM and MTB algorithms are described in Sec-
tion 2.1. Section 3 presents the derivation of the novel
CFO estimators, formulated in terms of the new ACA.
Finally simulation results and performance comparison
with state-of-the-art estimators are presented in Section
4.

2. SIGNAL MODEL AND PREVIOUS
APPROACHES

We consider an OFDM system, where q(n) = x(n)∗h(n)
(i.e., the convolution of the M -periodic training data
x(n) of length N , and the channel h(n) of length L) is
an M -periodic signal. The number of periods of q(n) is
J = N/M . It is useful to define s(p) = q(p), for 0 ≤
p ≤M −1, i.e., one period of q(n). A cyclic prefix (CP)
of length NCP is inserted before the training sequence
and later removed at the receiver. The received signal
becomes

y(n) = ej 2πε
N nq(n) + w(n) (1)

where w(n) is Gaussian noise and ε is the CFO normal-
ized by the subcarrier spacing.
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A quasi-synchronous scenario [10] is assumed to de-
couple the time offset (TO) and the CFO estimation
problems. This implies that the CP is assumed long
enough to assure that the received signal is periodic in
spite of the TO and the channel length.

2.1 Previous Approaches

CFO estimation is a nonlinear parameter estimation
problem. As a consequence, low complexity algorithms
for CFO estimation follow three basic steps: an indirect
measure of the CFO (usually the phase of the autocorre-
lation); a differential phase computation to reduce am-
biguity; and finally, a linear combination of these phase
differences (usually performed using the best linear un-
biased estimator, BLUE).

Following these steps, MM and MTB CFO estima-
tion algorithms are based on the sample autocorrelation
(AC) defined as

r̂(k) =
1

N − kM

N−1∑
n=kM

y(n)y∗(n− kM), 1 ≤ k ≤ J − 1

(2)
Substituting (1) in (2), results in

r̂(k) = e
j2πεk

J χ(k), 1 ≤ k ≤ J − 1 (3)

where χ(k) depends on q(n) and w(n), see [9] for further
details. We note from (3) that the CFO information is
divided in the J − 1 components of r̂(k). Defining

θ(k) = arg{r̂(k)} =
2πεk
J

+ arg{χ(k)} (4)

where 1 ≤ k ≤ J − 1, and considering |ε| < J/(2k), the
function

ζ(k) =
J

2πk
θ(k) = ε+

J

2πk
arg{χ(p)} (5)

for 1 ≤ k ≤ J − 1, gives an estimate of ε. We see from
(5) that the estimation range varies with k, and it is not
possible to directly combine the available information
without reducing the estimation range.

To avoid the range reduction the MM algorithm form
the CFO estimate by properly combining the phase dif-
ferences of contiguous samples of r̂(k). That is, we first
form a set phase differences as

φ(k) = [θ(k) − θ(k − 1)]2π =
2πε
J

+ γ(k) (6)

for 1 ≤ k ≤ J/2, where γ(k) is a function which depends
on q(n) and w(n) (for further details see [8]) and φ(0) =
0. We see from (6) that the estimation range is restricted
by |ε| < J/2. Finally, assuming a high SNR regime, the
BLUE is applied to φ(k), to obtain the CFO estimate.
Since the covariance matrix of φ(k) derived in [8], is
singular for k > J/2, it is not possible to employ all
available information.

The MTB algorithm estimates the CFO using the
function ζ(k), defined in (5). In order to extend the
range, ζ(1) is first used as a coarse CFO estimate.
Thereafter, the received signal is compensated using the

coarse estimation as ỹ(n) = exp(−j2πζ(1)n/N)y(n).
Replacing y(n) by ỹ(n) in (2) and (5) the angles ζ̃(k)
are obtained corresponding to the residual CFO, i.e.
ζ(k) = ζ(1) + ζ̃(k) for 2 ≤ k ≤ J − 1. Finally, con-
sidering also a high SNR regime, the BLUE combines
ζ(k) to estimate CFO. In [9], the authors present three
covariance matrices for ζ(k), corresponding to different
approaches. Two of them employ all available informa-
tion (J − 1 phases), the other one being singular for
k > J/2, as in the MM algorithm.

In the following sections we elaborate on low com-
plexity schemes for CFO estimation. The proposed es-
timators also base the estimation in the aforementioned
three basic steps, i.e. autocorrelation, differential phase
and linear combination, but they employ the ACA in-
stead of the classic AC. The differences between them
lie in the technique used to combine the information.
The CFO estimators proposed in the following offer dif-
ferent tradeoffs between estimation accuracy and com-
putational load.

3. NEW CFO ESTIMATION ALGORITHMS

The proposed estimators are based on the ACA, defined
as

r̂c(p, k) =
1

J − k

J−k−1∑
n=0

y(nM + p)y∗([n+ k]M + p) (7)

From definitions of the AC in (2) and the ACA in (7)
we may conclude that

r̂(k) =
1
M

M−1∑
p=0

r̂c(p, k) (8)

Substituting (1) into (7) and applying the central
limit theorem, the ACA for a large J may be approxi-
mated by

r̂c(p, k) ≈ e−j 2πεk
J |s(p)|2 + wc(p, k) (9)

where wc(p, k) is a zero-mean complex joint Gaussian
process for 0 ≤ p ≤ M − 1 and fixed k; or for 1 ≤ k ≤
J − 1 and fixed p. As can be noted from (9), the CFO
can be estimated using the ACA as long as |ε| < J/(2k).

We note that the combination over p is inherent to
the ACA and can be considered as an additional degree
of freedom with respect to the classical AC function (2).
On the other hand, the combination over k can be used
with any of the classical techniques to obtain full range.

In the following we present three alternative low
complexity CFO estimators based on the ACA.

3.1 Sum-based CFO estimator (SBE)

The first low complexity estimator consists of the fol-
lowing steps
• Step 1: Considering (9), the combination over p is

given by

ξ(k) = arg

{
M−1∑
p=0

r̂c(p, k)

}
(10)

where ξ(k) is the partial CFO estimate for k.
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• Step 2: From the relationship between the AC and
the ACA of (8) it follows that (10) is equivalent to (4)
for the same received signal y(n). To avoid a range
reduction, we take the phase differences of adjacent
samples of sequence ξ(k). For this purpose we define

ξd = [ξd(1), · · · , ξd(J − 1)]T, where (11)
ξd(k) = [ξ(k) − ξ(k − 1)]2π (12)

for 1 ≤ k ≤ J − 1, where [·]2π is the modulo-2π
operation and we also define ξ(0) = 0.

• Step 3: Finally, considering the approximate
weights

a(k) =
−J
2π

(J − k)2∑J−1
k=1 (J − k)2

=
−1
2π

6(J − k)2

(J − 1)(2J − 1)
(13)

it is possible to find the CFO SBE as

ε̂s = aTξd (14)

where a = [a(1) · · · a(J − 1)]T.
Remarks:
• The third step is the main difference with the MM

algorithm. The weighting factors in (14) employ J−
1 autocorrelation lags, while the MM algorithm only
employs J/2 lags. This leads to an improvement in
the performance.

• The range of the algorithm is J/2, as noted from (6).
• In the derivation of the algorithm is assumed a high

SNR regime.
• Approximate weighting factors are based on the as-

sumption that the phase differences in (12) are inde-
pendent. From [11], it is known that if samples of a
linear statistical model are independent, the weights
to obtain the parameter estimation are proportional
to the normalized energy of each sample. Since J−k
in (7) is the normalization coefficient for the ACA,
the selection of a(k) is natural. Extensive simula-
tions confirm that these weights lead to good results.

3.2 Direct combining CFO estimators (DCE)

For the remaining estimators to be introduced we con-
sider α(p, k) = arg{r̂c(p, k)}. After some straightfor-
ward manipulation and assuming a high SNR, we obtain

α(p, k) ≈ −2πεk
J

+
Im{wc(p, k)e

j2πεk
J }

|s(p)|2 ≈ −2πεk
J

+wα(p, k)

(15)
where wα(p, k) is a zero-mean real joint Gaussian pro-
cess for 0 ≤ p ≤M − 1 and fixed k; or for 1 ≤ k ≤ J − 1
and fixed p.

From (15) we can infer that the CFO estimate ε̂ can
be obtained as long as |ε| < J/(2k). The linear depen-
dence of ε in (15) suggests the application of the BLUE
to combine the information contained in p and k to find
the CFO estimation. Furthermore, since for high SNR
α(p, k) is approximately Gaussian, the BLUE approxi-
mates well the MLE.

Depending on which order the indices of α(p, k) are
processed (first combination over p, or first combination
over k), we obtain two different algorithms, as discussed
in the following.

3.2.1 Direct combining estimator A (DCE-A)

Step 1: For a fixed k, {α(p, k)}M−1
p=0 are statistically in-

dependent. Therefore, the BLUE weights that combine
the information over p result in

f(p, k) =
|s(p)|2

(J − k)(1 + σ2/(2|s(p)|2)) − (J − 2k)
,

g(p, k) =
|s(p)|2

(J − k)(1 + σ2/(2|s(p)|2)) ,

K(k) =

{ ∑M−1
p=0 f(p, k) if k < J/2∑M−1
p=0 g(p, k) if k ≥ J/2

,

b(p, k) =
1

K(k)

{
f(p, k) if k < J/2
g(p, k) if k ≥ J/2 ,

b(k) = [b(0, k), · · · , b(M − 1, k)]T , (16)

Then, arranging the phases α(p, k) into the vector

α(k) = [α(0, k), . . . , α(M − 1, k)]T, (17)

we can combine p components as

λ(k) = bT(k)α(k) (18)

Step 2: To avoid the range reduction, following MM
approach, we define the vector

λd = [λd(1), · · · , λd(J − 1)]T, where (19)
λd(k) = [λ(k) − λ(k − 1)]2π (20)

and λ(0) = 0.
Step 3: In order to obtain the DCE-A, the CFO
estimates λd(k) are combined using the approximate
weighting factors defined in (13) as

ε̂a = aTλd (21)

Remarks:
• Equation (18) employs a different combination for p

than SBE in (10) and MM in (4). Like SBE, DCE-
A also employs J − 1 lags, which is possible due to
the introduction of the ACA providing an additional
degree of freedom (the index p).

• DCE-A depends on |s(p)|2 but because of the un-
known channel, this variable is not available. How-
ever, as noted from (9), |s(p)|2 for a given k can be
estimated as |r̂c(p, k)|.

• The angles resulting from arg{·} lie between ±π. As
a consequence, there is a phase discontinuity in π.
It is seen from (15) that for some ε and k, the ele-
ments of α(p, k) for 0 ≤ p ≤ M − 1 are close to the
phase discontinuity. Due to the noise, these values
may fall into different sides of the discontinuity. In
these cases, the estimate becomes incorrect, because
the derivation of the weighting factors assumes that
the phase is unwrapped and not circular. For exam-
ple, if M = 2 and phase estimates for some k are
−π + δ and π − δ (with 0 < δ < π/2), with both
weights 1/2, the direct result of the weighting is 0,
whereas it should be π. If the CFO is not large, er-
rors due to discontinuities are unlikely and DCE-A
works properly.
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To avoid the phase-discontinuity problem that arises
from the application of the weighting factors in Step
1, the next section introduces another direct combining
estimator that invert the order in the combination of p
and k.

3.2.2 Direct combining estimator B (DCE-B)

Step 1: Let us define the following phase differences for
a fixed p

ψ(p, k) = α(p, k) − α(p, k − 1) (22)

where α(p, 0) = 0 for 0 ≤ p ≤M − 1.
Step 2: Again using the approximate weighting factors
defined in (13), the combination over k results in

ψp(p) = aTψ(p) (23)

where ψ(p) = [ψ(p, 1), · · · , ψ(p, J − 1)]T.
Step 3: Considering (3) and noting that the compo-
nents of ψp(p) are independent for different p (because
α(p, k) are independent), it is possible to define the fol-
lowing approximate weighting factors

c(p) =
|s(p)|2∑M−1

p=0 |s(p)|2 (24)

By grouping ψp(p) in vector ψp = [ψp(0), · · · , ψp(M −
1)]T and c(p) in c = [c(0), · · · , c(M−1)]T, the final CFO
estimate becomes

ε̂b = cTψp (25)

Remarks:
• Combination over k is not as robust as in DCE-A or

SBE, because it depends on a single component p.
This can be seen by comparing (23) with (14) and
(21). This is particularly notorious for large CFO.
As a consequence DCE-B works properly only for
small CFO.

• DCE-B also depends on |s(p)|2, but in this
case is more appropriate to estimate it as
1/(J − 1)

∑J−1
k=1 |r̂c(p, k)|.

4. SIMULATIONS

In this section the performances of the proposed CFO
estimators are evaluated and compared with those of the
MM and the MTB algorithms. We employ the same se-
quence to evaluate each method. The MTB uses Method
B described in [9]. As a benchmark we consider the
Cramer-Rao lower bound (CRLB) for CFO estimation
employing a periodic TS [3].

Although (16) reveals that DCE-A algorithms de-
pends on σ2, extensive simulations show that the depen-
dence on this value has a small effect in the weighting
factors. Therefore, the simulations assume that σ2 is
perfectly known.

The training sequence has N = 64 samples and pe-
riod M = 8. The length of the cyclic prefix is 16, and
the channel taps are given by {hk(l)}L

l=0, L = 10, with
exponential decay profile E{|hk(l)|2} = Ge−l/γ , where
G is chosen such that

∑L
l=0E{|hk(l)|2} = 1 and γ = 5.

The CFO estimates are averaged over Nc = 100 differ-
ent channel realizations, and each channel realization is
averaged over Nn = 100 noise realizations for each SNR.

Figure 1 shows the performance of the proposed al-
gorithms for low CFO. It can be noted that DCE-A and
DCE-B have the best performance for low SNR. SBE
works better than MM for any SNR but especially for
low values. At high SNR (> 0 dB), DCE, SBE and MTB
have the same performance and all are better than MM.
This is because MM does not employ all available infor-
mation. All algorithms converge to the CRLB for high
SNR.

The performance of SBE and DCE algorithms
demonstrates that it is possible to employ the informa-
tion available for correlation lags greater than J/2 for
the differential phase method proposed in [8]. This re-
futes the hypothesis of [3] that states there is no extra
information in these terms.

Figure 1: MSE versus SNR for ε = 0.1.

Figure 2 illustrates the behavior for a large CFO.
Although the DCE based estimators are tailored for low
CFO, they still outperform the MM algorithm for any
SNR, and the MTB algorithm for low SNR (< −1dB).
Also in this case, SBE outperforms MM. On the other
hand, CFO levels remain moderate in practical wire-
less communication systems. and the reduced range of
DCE-based estimators should not pose a problem. For
example, LTE [12] requires 1 ppm accuracy from the os-
cillators. Together with typical mobile speeds this gives
rise to CFO levels on the order of hundreds of Hz while
subcarrier spacing is 15 kHz.

In order to give a qualitative measure of the perfor-
mance improvement obtained with the proposed estima-
tors, Table 1 shows the MSE of each method relative to
the CRLB, for SNRs of −5dB and 2dB; and a ε = 0.1.
The relative MSE is defined as MSEr = Q/QCR, where
Q and QCR are respectively the MSE of the evaluated
method and the MSE of CRLB at specified SNR.

4.1 Computational load

To illustrate the complexity of the algorithms, Table 2
shows the approximate number of real multiplications
needed to obtain an estimate for each algorithm. The
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Figure 2: MSE versus SNR for ε = 0.3.

Table 1: MSE relative to the CRLB
Estimator MSEr at −5dB MSEr at 2dB

MM 609 % 127 %
MTB 2830% 109 %
SBE 434 % 109 %
DCE-A 135 % 106 %
DCE-B 117 % 106 %

complexity calculation assumes that a complex multi-
plication is equivalent to four real multiplications and
a real division is considered as one real multiplication.
Nb = J − 1 is the number of correlation lags.

Table 2: Complexity comparison
Estimator No. of real multiplications M = J = 8

MM 2J(3/4N − M/2) 700
MTB N3

b /3 + 2MN2
b + 4JNb + 4N 1400

SBE 2Nb(N + 1) 900
DCE-A Nb(2N + 6M) 1200
DCE-B Nb(2N + M) + 3M 1000

Although the MM algorithm needs approximately
20% less operations than SBE, it only employs half of
the available AC coefficients (J/2). The complexity of
MTB is high because it needs matrix inversion [9].

5. CONCLUSIONS

We derived a family of novel carrier frequency offset
(CFO) estimators, the sum-based CFO estimator (SBE)
and two BLUE-based CFO estimators (DCE). The algo-
rithms are based on a new interpretation of the cyclic au-
tocorrelation function of the received training sequence.

SBE is a generalization of the classic estimator pro-
posed by Morelli and Mengali and performs better for
low and high SNRs. DCE algorithms are derived from
the structure of the new cyclic autocorrelation. Al-
though they provide an important improvement in the
performance, they are not robust for large CFO. The
proposed algorithms attain a better performance since
they employ all autocorrelation lags, contrary to Morelli

and Mengali algorithm. Even when more information is
used, the computational complexity remains compara-
ble.
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