
ON THE IMPLEMENTATION OF A SECURE MUSICAL DATABASE MATCHING

José Portêlo1 2, Bhiksha Raj3, Alberto Abad1, Isabel Trancoso1 2

1INESC-ID Lisboa
2Instituto Superior Técnico, Lisboa, Portugal

3Language Technologies Institute, Carnegie Mellon University, Pittsburgh PA, USA
e-mail: {Jose.Portelo,Alberto.Abad,Isabel.Trancoso}@inesc-id.pt, bhiksha@cs.cmu.edu

ABSTRACT
This paper presents an implementation of a privacy-
preserving music database matching algorithm, showing how
privacy is achieved at the cost of computational complexity
and execution time. The paper presents not only implemen-
tation details but also an analysis of the obtained results in
terms of communication between the two parties, compu-
tational complexity, execution time and correctness of the
matching algorithm. Although the paper focus on a music
matching application, the principles can be easily adapted to
perform other tasks, such as speaker verification and key-
word spotting.

1. INTRODUCTION

Over the past few years there has been an exponential growth
of security and privacy concerns motivated by an unprece-
dented level of access to multimedia contents and on-line ser-
vices. This has led to the development of methods to protect
the privacy of the persons using these resources and the data
being exchanged.

In order to protect a person’s individual privacy, blind-
ing signature schemes have been proposed which hide that
person’s identity from the party with whom he/she needs to
interact with. Regarding the privacy of the data being ex-
changed, there are two different situations: one where both
parties require access to information and just need to com-
municate it in a safe way (e.g. e-banking, on-line shopping),
and the other where both parties want to hide their personal
information from the other but still be able to work together
to achieve a specic goal (e.g. database query). The first can
be achieved by encryption key agreement between the two
parties and encrypting every thing they want to transmit. The
second can be achieved by using Secure Multiparty Compu-
tation (SMC) protocols. The introduction of privacy does,
however, come with a cost. Performing any of these oper-
ations in a secure way results in a considerable increase of
both computational time and complexity.

In this paper we will focus on the implementation of a
music matching task where both parties preserve the privacy
of their data. This implementation differs greatly from the
one where no privacy is preserved, because not only there
is an increase in the complexity of the equations that repre-
sent each individual algorithm, but we also have to perform
all the computations using ciphered values, which means re-
stricting ourselves to operations based on modular arithmetic
using an homomorphic cryptosystem. Our implementation
will follow the algorithm described in [1]. We will consider
a particular case of SMC where only two parties are involved
in the secure computations. Although we present a specific

application of SMC, the principles considered here can be
easily adapted to perform other tasks, such as speaker identi-
fication/verification and keyword spotting.

In section 2, we describe the music matching problem
and present the two main concepts necessary for its imple-
mentation in a privacy-preserving way. In section 3, we
present a detailed implementation of a solution to the prob-
lem at hand. In section 4, we discuss a series of aspects re-
lated to the implementation itself. Finally we present some
conclusions.

2. MUSIC MATCHING PROBLEM

A quick description of the problem is to consider a party (Al-
ice) that has access to a music recording and wishes to find
out relevant information about it (i.e. music title, artist, year
of release, etc.) by querying an on-line database (Bob). An
easy and efficient way of doing this can be achieved by Al-
ice providing Bob with a small segment of her music, for
instance a 5 seconds segment, and then he compares her mu-
sic segment with the entire collection on his database. This
can be done, for instance, by performing a cross-correlation
between the signals. Consider, however, that both Alice and
Bob have privacy concerns about the query. Alice may wish
that Bob does not know which music she is querying and
Bob may not wish his database to be exposed to direct access
queries. This means that Alice and Bob should be able to per-
form the computations in such a way that they learn nothing
about each other’s data. Our implementation uses both SMC
in the two party situation and an homomorphic cryptosystem
to do just that. We now briefly present these two concepts.

2.1 Secure two party computations

Consider Alice and Bob have private data a and b respec-
tively, and they wish for a trusted third party to perform an
operation with their data such that c = f (a,b), and then com-
municate the result back to them. The algorithm that com-
putes f (a,b) is secure only if it does not reveal more infor-
mation about a and b than what could be gained by getting
the result c directly from the trusted third-party. Such an al-
gorithm should have the following properties:
• every step has to be expressed in terms of a few basic

operations for which privacy preserving implementations
already exist, and

• intermediate results have to be distributed randomly be-
tween the two parties, so that neither party is able to com-
pute the entire result. This can be done by providing each
party with random additive shares c1 and c2 such that
c1 + c2 = c.

19th European Signal Processing Conference (EUSIPCO 2011) Barcelona, Spain, August 29 - September 2, 2011

© EURASIP, 2011 - ISSN 2076-1465 1949

2.2 Homomorphic public-key cryptosystem
A public-key cryptosystem consists of a triple of probabilis-
tic polynomial time algorithms for key generation (KG), en-
cryption (EN) and decryption (DE).
• The KG algorithm generates a pair of private and public

keys, sk and pk respectively.
• The EN algorithm creates a ciphertext (encryption) of a

plaintext (input) msg using public key pk, EN(msg, pk).
• The DE algorithm computes the original input m given

the ciphertext of that input and the private key sk.
An homomorphic cryptosystem is a special type of cryp-
tosystems that allows for specific algebraic operations to be
performed indirectly in the plaintext by manipulating the ci-
phertext. We will consider an homomorphic cryptosystem
with the following properties, which are crucial for perform-
ing the privacy preserving computations we are interested in:

EN(a, pk)×EN(b, pk) = EN(a+b, pk) (1)

(EN(a, pk))b = EN(a×b, pk) (2)
The Paillier cryptosystem [2] is an example of such a cryp-
tosystem, and we will use it in our implementation.

3. IMPLEMENTING A SECURE MUSIC
MATCHING ALGORITHM

In this section we will describe how Alice and Bob can per-
form an on-line music query in such a way that they both
preserve the privacy of their data. A theoretical description
on how this should be done is presented in [1]. We will fo-
cus primarily on the implementation aspects. As in [1], we
will also structure our implementation in steps, and for each
step we will provide details on both the required operations
and privacy-preserving algorithms we considered. The first
step describes the computation of the cross-correlation, the
second step shows how to obtain the maximum element of a
given vector, the third step describes how to find the index of
the maximum element of a vector and finally the fourth step
shows how to obtain the information in a specific database
entry.

3.1 Step 1: Cross-correlation of the music signals
In the first step we will perform the cross-correlation be-
tween Alice’s music segment and each of the musics in Bob’s
database. Alice starts by generating a private and public
key pair (sk,pk) and sends the public key to Bob. She then
encrypts each element of her music segment (xt) with pk,
obtaining et = EN(xt , pk) for t = {1, ...,T}, T is the num-
ber of samples in her music segment, and sends them to
Bob. He can now compute the cross-correlation in a privacy-
preserving manner.

In order for Bob to compute the cross-correlation be-
tween Alice’s values and his own values (yt) there are two
possible options: he can compute it either in the time do-
main or in the spectral domain. The first option is easier to
implement, as the cross-correlation can be computed by:

zn =
T

∏
t=1

(et)
yn+t (3)

which is the ciphertext version of the expected equation. This
solution is not usually used, because it is very time consum-
ing. The execution time of the full cross-correlation in the

time domain is O(T 2). The second option consists of com-
puting the Fast Fourier Transform (FFT) of both Alice’s seg-
ment and each music in Bob’s database, performing the cross
power spectrum (CPS) on the resulting signals and finally
computing the inverse FFT (IFFT). In terms of ciphertext this
is represented by:

z = IFFTsecure
(
(FFTsecure(e))FFT (y)) (4)

where FFTsecure denotes the privacy-preserving version of
the FFT. This solution is less straightforward but faster than
the first one. The execution time of the full cross-correlation
in the frequency domain is O(T log2(T)).

In the case of desiring one sample precision in the com-
putation of the cross-correlation between Alices music seg-
ment and the musics in Bobs database, we would definitely
implement the second solution. However, there is no need
for such precision when computing the cross-correlation be-
tween two music segments that are sufficiently long because
consecutive cross-correlation results are not significantly dif-
ferent. Alternatively, we can choose a fixed larger step size
for the computation of consecutive cross-correlations and,
thus, we can save a lot of computational time. In particular,
it would take the same amount of time to compute the cross-
correlation either in the time domain or in the frequency do-
main when T/step = log2(T). An analysis on the choice of
value for the step is presented later on. There is also a prob-
lem with the complexity inherent to performing a FFT in a
privacy-preserving way, for which an interesting analysis is
presented in [3]. Computing the FFT in ciphertext not only
requires much more operations than computing its equivalent
in plaintext, but also each operation is more complex, which
further contributes to avoid this solution. These two reasons
led us to implement the privacy-preserving cross-correlation
in the time domain.

After computing the cross-correlation, Bob generates
random numbers bi, one for each cross-correlation values,
which will become his part of the random additive shares.
Using these numbers, he then computes Alice’s shares of the
cross-correlation ai such that zi = ai +bi, and sends them to
her.

3.2 Step 2: Obtaining the cross-correlation peaks
In the second step, Bob must compute the peaks of the cross-
correlation for each music in his database. Since the result
is randomly distributed between him and Alice, he cannot
perform greater-than comparisons directly. He must take ad-
vantage of the fact that zi ≥ z j ⇐⇒ (ai − a j) ≥ (b j − bi).
To perform the comparisons in a privacy-preserving man-
ner, one can implement any solution to the Yao’s millionaire
problem [4]. In this paper we implemented an adaptation of
the Blake-Kolesnikov algorithm [5]. This algorithm works
by comparing two values at the bit level. Consider the bit
representation of values α = ai− a j and β = b j − bi to be
α = αnαn−1...α1 and β = βnβn−1...β1 respectively. For each
bit m, m = 1, ...,n, Bob computes:

edm = eαm × (−eβm) (5)

e fm = eαm × ((eαm)
βm)−2× eβm (6)

eγm = (eγm−1)
2× e fm , eγ0 = e0 (7)

eδm = edm × (eγm × e−1)
rm (8)

1950

with rm a random number. These equations represent dm =
αm−βm, fm = αm⊕βm = αm−2αmβm +βm, γm = 2γm−1 +
fm and δm = dm + rm(γm− 1) in the plaintext, respectively.
Bob then permutes all the δm and sends them to Alice. Alice
now only has to check each δm and see if any of them is 1 or
−1. If ∃m : δm = 1, then αm > βm⇒α > β ; if ∃m : δm =−1,
then αm < βm ⇒ α < β ; else α = β . The permutation we
implemented was the Fisher-Yates shuffle, first presented in
[6].

3.3 Step 3: Finding the most likely music index

In this step Alice’s wishes to know which index in Bob’s
database corresponds to her music. This index is the one
for which the vector of cross-correlation peaks has its maxi-
mum. Alice can obtain this information without Bob know-
ing which song she has by means of a permute protocol [7].
The main idea is that given Alice’s and Bob’s additive secret
share vectors a and b they can compute different secret share
vectors a and b such that a+ b = π(a)+π(b), where π is a
random permutation.

The permute protocol works as follows. After Bob gen-
erates a private and public key pair (sk,pk), he encrypts each
of his random additive shares corresponding to the cross-
correlation peaks and sends them to Alice. She generates
a random number sk for each value from Bob and com-
putes b′k = EN(bk, pk)×EN(sk, pk) and a′k = EN(ak, pk)×
EN(−sk, pk). She then generates another random number r
and computes a′′k = a′k×EN(r, pk). She generates a random
permutation π and computes a = π(a′′) and b = π(b′). Fi-
nally she sends a and b to Bob. Notice that Bob now has
access to z̃ = π(a)+π(b)+ r in the plaintext for each music,
but he cannot know any of the values of the cross-correlations
because he does not know r and he does not know which in-
dex corresponds to which music in his database because of
the permutation π . He can compute the maximum of these
values and send the permuted index back to Alice. After she
undoes the permutation, she now knows the index of her mu-
sic in the database.

3.4 Step 4: Obtaining the desired information

In the final step Alice finally retrieves from Bob’s database
the information about her music. If the database was public,
she could just browse it until she found her music index. But
since Bob wants to preserve the privacy of his database, ex-
cept of course the information on Alice’s music, they must
exchange the information using oblivious transfer [8]. Con-
sider l to be the index of Alice’s music on the database and
u = {u1, ...,uK} a vector representing the relevant informa-
tion of the K musics in the database. If Alice encrypts her
music index and send it to Bob, he can just generate random
numbers rk and compute:

vk = EN(uk, pk)× (EN(l, pk)×EN(−k, pk))rk (9)

with k = 1, ...,K, which in the plaintext is equivalent to
vk = uk + rk(l − k). He then sends them to Alice. Notice
that the privacy of the database is preserved, because even if
Alice decrypts every message she receives from Bob, all but
the information corresponding to her music will be random
numbers to her.

4. EXPERIMENTAL RESULTS

In this section we describe the experiments we performed
in order to obtain an implementation of a music matching
algorithm which is fast enough to be used as an on-line ap-
plication without compromising the correctness of the mu-
sic matching process. We will focus on the following as-
pects: communication between the two parties, complexity
and time consumption of the algorithms and correctness of
the matching result.

The results presented in this section were performed us-
ing encryption keys with Nbits = 512 bits in length and a mu-
sic database of 50 16-bit WAVE files of different genres, in-
cluding celtic, pop and metal, and with an average duration
of 3 minutes and 30 seconds. In order to reduce the size of
the musics in terms of number of samples, since it greatly
affects the execution time of the algorithm, we downsampled
all the musics to Fs = 8000Hz.

4.1 Communication between the two parties
Regarding the communication exchanges between Alice and
Bob, there is a major difference between the situation where
the music matching occurs without the use of privacy-
preserving techniques and the situation where cryptography
is used. In the first situation, communication between the
parties occurs only at the start of the interaction, when Alice
sends her music segment to Bob, and at the end of that inter-
action, when Bob returns the information corresponding to
her music. As it can be observed, the total amount of com-
munication in this situation is very small. In the second case,
mainly due to the use of cryptography and random additive
shares at each computation step, the need for communication
is much larger. We will now analyse this situation in more
detail.

In the second situation there are three classes of values
being exchanged between Alice and Bob: control values used
for exchanged messages synchronisation, such as the size of
Alice’s music segment, etc., cryptographic keys and the en-
crypted values themselves. Since the third class overwhelms
the other two in terms of total amount of communication re-
quired, we will examine only that one.

Like in the first case, performing the music matching in
a private way starts by Alice sending her music segment to
Bob. The difference is that in this case every sample has to be
encrypted. If we consider S to be the size of Alice’s segment,
she has to send 2NbitsS bits1 instead of the original 16S bits.

For each cross-correlation Bob computes, he has to send
a random additive share to Alice. The average length of the
musics in Bob’s database is much larger than the length of
Alice’s music segment, so he has to compute on average Nstep
cross-correlations for each music, where the value of Nstep
will depend on the chosen step between cross-correlations.
This means that at this stage he has to send a total of
2NbitsKNstep bits to Alice. For obtaining the cross-correlation
peaks, Alice has to send to Bob the encryption of each bit of
each of her random additive shares for the cross-correlation
and Bob has to send back the greater-than result for each
comparison he performs. This means that the total amount of
bits exchanged in this step is 2(2N2

bitsKNstep). For finding the

1we have to consider 2Nbits bits per message instead of just Nbits because
the Paillier cryptosystem performs the following mapping: p ∈ Z∗Nbits

→ c ∈
Z∗

N2
bits

, p−plaintext message, c−ciphertext message

1951

most likely song index, there are three rounds of encrypted
random additive shares exchange between Alice and Bob. In
this step they exchange between themselves 3(2NbitsK) bits.
Finally in the last step, Bob sends to Alice the information
on his database. Assuming that the information of each song
can be represented in a single number of Nbits bits, he sends
2NbitsK bits to Alice. The summary of the communication
required between the two parties is presented in Table 1.

situation no privacy with privacy
Step 1 16S 2NbitsS+2NbitsKNstep
Step 2 - 2(2N2

bitsKNstep)
Step 3 - 3(2NbitsK)
Step 4 Nbits 2NbitsK

Table 1: Summary of communication analysis, results pre-
sented in number of bits.

4.2 Computational complexity
Another aspect where there is a significant difference be-
tween the two implementation approaches is the computa-
tional complexity, represented by the type and number of op-
erations required for each algorithm. We will use the abbre-
viations CA for complex addition, CM for complex multipli-
cation, MM for modular multiplication and ME for modular
exponentiation. Notice that MM is the ciphertext equivalent
of CA in the plaintext and that ME is the ciphertext equiv-
alent of CM in the plaintext. Also, CA is composed by 2
additions and CM is composed by 2 additions and 4 multipli-
cations. The computational complexity of the algorithms is
summarised in Table 2.

situation no privacy with privacy
cross-correlation T (1CM+1CA) T (4ME +2MM)

greater-than 1 N(6MM+4ME)

Table 2: Summary of computational complexity analysis, re-
sults presented in number of operations.

4.3 Execution time
We now analyse the implementation of the algorithms used
for the privacy-preserving music matching in terms of exe-
cution time. All the execution times presented were obtained
running the algorithms on a Intel Core2 Quad CPU Q6600 @
2.40GHz. We will focus on two main algorithms, which are
the privacy preserving versions of the cross-correlation and
greater-than algorithms.

We considered three different values, T = 8000, T =
40000 and T = 80000, because we wanted to evaluate the
obtained results for music samples of 1, 5 and 10 seconds,
respectively. The execution time, in seconds, for each algo-
rithm and for the values of T considered is presented in Table
3.

For comparison, we also present the execution times, in
seconds, for the non-private implementations of the same al-
gorithms in Table 4.

The results in Table 3 immediately raise some concerns.
If we consider the music matching of Alice’s music segment
with a single music in Bob’s database, we need to com-
pute Nstep privacy-preserving cross-correlations and Nstep
privacy-preserving greater-than comparisons. If we consider

T cross-correlation greater-than
8000 4-5 1-2
40000 18-20 1-2
80000 35-40 1-2

Table 3: Summary of execution times for privacy-preserving
algorithms, results presented in seconds.

T cross-correlation greater-than
8000 �0.01 ∼0
40000 <0.01 ∼0
80000 0.01 ∼0

Table 4: Summary of execution times for non-private algo-
rithms, results presented in seconds.

that the average music has a 3 minutes and 30 seconds du-
ration and a step between cross-correlations of 1 second, it
would take around 1 hour and 15 minutes in the situation
where T = 40000 for a single computer to perform the nec-
essary computation on a single music. Considering that a
database may contain thousands of musics, the whole process
would required an unacceptably large amount of time. How-
ever, we can take advantage of cluster computing [9] in order
to solve this problem. Many of the companies that might be
interested in implementing privacy-preserving music match-
ing algorithms are likely to have tens of thousands if not hun-
dreds of thousands of servers at their disposal, which would
allow them to fully parallelize all the computation of the
privacy-preserving algorithms. Given a sufficient amount of
servers, each could compute a single cross-correlation and
a single greater-than comparison, and then merge all the re-
sults together. Although we did not test any form of parallel
computing, we reckon that from the user’s perspective, the
time it takes for him/her to get the information he/she needs
should reduce from several days to only a few minutes.

4.4 Correctness of the results of the music database
matching algorithm
The correctness of the matching results is also a very impor-
tant aspect to take into account, as the whole music matching
process is useless if it does not provide a correct result. In
order to find out an adequate value for the step between the
cross-correlations we chose several random music segments
of 1, 5 and 10 seconds from the musics in the database and
used them to perform the query using different values for the
step between cross-correlations in order to find out when a
visible degradation of the results occurred. This was eval-
uated by analysing the ratio between the maximum of the
cross-correlation for the correct music and the maximum of
the cross-correlation for all the remaining musics. A ratio
lower than 1 means a wrong identification. This ratio was
computed over a wide range of values for the step, and the
results we obtained are presented in Figure 1.

By analysing the results, we can see that adequate val-
ues for the step between cross-correlations are 80, 400 and
2000 samples for T = 8000, T = 40000 and T = 80000,
respectively. We can now compute the average number of
cross-correlations we have to compute for each music in the
database. These results are presented in Table 5. As ex-
pected, for larger music segments, one can compute much
less cross-correlations.

1952

Figure 1: Music matching results as a function of step.

T step [samples] Nstep
8000 80 21000

40000 400 4100
80000 2000 800

Table 5: Number of cross-correlations as a function of step.

5. CONCLUSIONS

In this paper we presented an implementation of a privacy-
preserving music database matching algorithm. We tackled
not only the implementation details but also presented a thor-
ough analysis of the obtained results in terms of communi-
cation between the two parties, computational complexity,
execution time and correctness of the matching algorithm.
Although a solution for this problem in a privacy preserv-
ing manner brings a considerable increase in the amount of
resources necessary to perform it in a satisfactory way, we
also notice that this is the cost of privacy. Hiding informa-
tion from another party and still allow it to perform useful
computations over it comes as a trade-off for computational
complexity and execution time.

6. FUTURE WORK

The earlier version of this work was focused only in the
detailed implementation of the algorithm presented in [1].
However, we found out later that it is possible for Bob to
attack the algorithm in Step 3 and find out which song Al-
ice has. A simplified presentation of the attack is as follows.
Since Bob has access to all z̃ in the plaintext for each music,
he can compute z̃di f f

i j = z̃i− z̃ j, i, j = 1, ...,K, thus removing
the random number EN(r, pk). From there he can compute
all the cross-correlations between all the music segments in
his database, and match them to each z̃, When he finds all the
matches, he can reverse the permutation. Because the attack
uses exclusively operations in the plaintext, Bob can perform
it in a very time and resource efficient way.

We now present a sketch of a possible solution to counter
this attack. In order to effectively prevent Bob from knowing
which song Alice has, he must compute the most likely song
index in the ciphertext, which means using once again secure
greater-than comparisons. An initial approach could be for
Alice and Bob to perform K− 1 greater-than comparisons,

which is the minimum required amount for an array of size
K. The problem with this approach is that Bob knows that the
index of the maximum will be one of the two values present
in the last comparison, and therefore he will have a 50/50
percent chance of guessing correctly which song Alice has.
For Bob to know nothing about the index of the maximum,
he would have to compute all the possible greater-than com-
parisons, which sum up to K(K−1)

2 comparisons. The problem
with this approach is that it takes too much time to perform.
We found out that a solution using K

2 log(k) comparisons not
only takes an acceptable time to perform but also provides
enough security to prevent Bob from getting any information
he is not supposed to.

7. ACKNOWLEDGEMENTS

This research was partially supported by FCT grant
SFRH/BD/71349/2010.

REFERENCES

[1] M. Shashanka and P. Smaragdis, “Privacy-Preserving
Musical Database Matching”, in 2007 IEEE Workshop
on Applications of Signal Processing to Audio and
Acoustics, New Platz, NY, October 21-24, 2007, pp. 319-
322.

[2] P. Paillier, “Public-key Cryptosystems based on Com-
posite Degree Residuosity Classes”, in Proceedings of
Advances in Cryptology - EUROCRYPT’99, ser. Lec-
tures Notes in Computer Science, J. Stern, Ed., vol.
1592, 1999, pp. 104-120.

[3] T. Bianchi, A. Piva and M. Barni, “Implementing the
Discrete Fourier Transform in the Encrypted Domain”,
in Proceedings of the 33rd International Conference on
Acoustics, Speech, and Signal Processing, Las Vegas,
Nevada, March 30-April 4, 2008, pp. 1757 - 1760.

[4] A. C.-C. Yao, “Protocols for Secure Computation”, in
Proceedings of the 23rd IEEE Symposium on Founda-
tions of Computer Science, 1982, pp. 160-164.

[5] I. Blake and V. Kolesnikov, “Strong Conditional Obliv-
ious Transfer and Computing on Intervals”, in Pro-
ceedings of Advantages in Cryptology - ASIACRYPT’04,
volume 3329 on LNCS, pp. 515-529, Springer-Verlag,
2004.

[6] R. Fisher and F. Yates, “Statistical Tables for Biological,
Agricultural and Medical Research”, London: Oliver &
Boyd, 1938.

[7] M. Atallah, F. Kerschbaum and W. Du, “Secure and Pri-
vate Sequence Comparisons ”, in Proceedings of Work-
shop on Privacy in the Electronic Society, Washington,
DC, October 2003.

[8] M. Naor and B. Pinkas, “Oblivious Transfer and Poly-
nomial Evaluation”, in Proceedings of the 31st Annual
ACM Symposium on Theory of Computing, 1999, pp.
245-254.

[9] M. Baker and R. Buyya, “Cluster Computing at a
Glance, High Performance Cluster Computing: Archi-
tectures and Systems ”, Vol. 2, Rajkumar Buyya (ed), pp.
3-47 (Chapter 1), ISBN 0-13-013784-7, Prentice Hall,
NJ, USA, 1999.

1953

