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ABSTRACT

Bayesian filtering appears in many signal processing prob-
lems, reason why it attracted the attention of many re-
searchers to develop efficient algorithms, yet computationally
affordable. In many real systems, it is appropriate to con-
sider a—stable noise distributions to model possible outliers
or impulsive behavior in the measurements. In this paper,
we consider a nonlinear state-space model with Gaussian
process noise and symmetric a—stable measurement noise.
To obtain a robust estimation framework we consider that
both process and measurement noise statistics are unknown.
Using the product property of a-—stable distributions we
rewrite the measurement noise in a conditionally Gaussian
form. Within this framework, we propose an hybrid sigma—
point/Monte Carlo approach to solve the Bayesian filtering
problem, what leads to a robust method against both outliers
and a weak knowledge of the system.

1. INTRODUCTION

The problem under study concerns the derivation of efficient
and robust methods to solve the recursive Bayesian filter-
ing problem, which implies the on-line estimation of the
time—varying unknown states of a system, using the incom-
ing flow of information (observations) from the system, along
with some prior statistical knowledge of the variation of such
states. The solution to this problem does not exist in a gen-
eral manner and we have to resort to suboptimal techniques.
The Kalman filter (KF) provides the closed form solution
to the optimal filtering problem in linear/Gaussian systems,
assumptions that not always hold in real-life systems. The
direct extension of the KF to nonlinear systems is the Ex-
tended Kalman filter (EKF), which uses a local linearization
of the process and measurement nonlinear functions and ap-
plies the Kalman solution. This filter only gives acceptable
performances in weak nonlinear systems and diverges easily.
A plethora of alternatives have been proposed in the last
decade to solve the nonlinear estimation problem, among
them, the family of Sigma—point (SP) filters [1, 2, 3] within
the Gaussian framework, and the family of Sequential Monte
Carlo (SMC) methods [4] for arbitrary noise distributions.
SMC methods provide a general framework to deal with
nonlinear/non-Gaussian problems using a stochastic sam-
pling approach to numerically approximate the integrals in-
volved in the optimal solution. This broad suitability comes
at expense of a high computational load, thus having limited
practical use in time-constrained applications. SP methods
use a deterministic sampling to approximate the integrals
involved in the Bayesian filter solution. The key point is to
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assume that the measurement and process noise are inde-
pendent random Gaussian processes. This leads to Gaussian
state transition and measurement likelihood densities, which
in turn reverts to a Gaussian posterior density [5]. Recently,
new SP methods have been proposed [6, 3], numerically sta-
ble and easily extendable to high dimensional problems, mit-
igating the curse of dimensionality and divergence effects.

In many real-life systems, the additive Gaussian noise
model does not hold and the noise statistics parameters are
unknown. In these scenarios the methods based on the stan-
dard Kalman framework (KF, EKF and SP) give poor per-
formances. a-stable distributions [7] have been shown to
be appropriate in many signal processing applications [8], in
particular, being useful to model the existence of outliers or
impulsive behaviors on the measurement model [9].

When dealing with symmetric a—stable (SaS) noise, the
product property allows us to use a Scale Mixture of Normals
(SMiN) representation of the a-stable probability density
function (pdf) [10], which implies that a SaS distribution
can be expressed in a conditionally Gaussian form. This
idea has been applied to use Markov Chain Monte Carlo
(MCMCQ) inference techniques [11] and to solve the Bayesian
estimation problem for linear Time—Varying AutoRegressive
(TVAR) models using a direct SMC solution [12].

In this contribution, we extend the results found in the
literature to solve the robust Bayesian filtering problem for
nonlinear multivariate state-space models where the mea-
surement noise is a—stable distributed and the noise statistics
parameters are unknown. The proposed method provides an
alternative to the Kalman-Lévy filter [13] to deal with non-
linear systems and SaS noise, being robust against outliers
while considering a weak knowledge about the system dy-
namics.

The paper is organized as follows: Section 2 introduces
the a—stable distributions and the product property, being
the key point to write the state—space model as condition-
ally Gaussian. Section 3 sets the state—space model and the
estimation problem. In Sections 4 and 5 we derive the ro-
bust hybrid sigma—point/Monte Carlo method, and a target
tracking application is used in Section 6 to evaluate the pro-
posed algorithm.

2. o—STABLE DISTRIBUTIONS AND THE
PRODUCT PROPERTY

In the literature, we find several equivalent definitions for
a-stable distributions [7]. In all the cases, an a—stable dis-
tribution is characterized by four parameters: « refers to the
index of stability, v is the scale factor, and 8 and § are the
skewness and shift parameters. The characteristic function
of an a-stable random variable is usually considered as a
definition for stable distributions, because in a general case
the closed form expression for the density function does not
exist.

Definition 1. An a-stable random variable (r.v.) X ~
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S(a,, B,0), with parameters a € (0,2], v > 0, 8 € [-1,1]
and 6 € R, has the following characteristic function

exp (—v*|u|*(1 — iBsign(u) - tan Z2) + idu)
Do (u) =
! eap (—ylul (1 +iB2sign(u) - In |u]) + idu)
(1)

for a # 1 and o = 1, respectively.

Due to the non—existence of the variance of these dis-
tributions, all the techniques valid for the Gaussian case do
not apply. An important aspect with a—stable distributions
is that they generalize the central limit theorem (CLT), pro-
viding a solution for random variables with infinite variance.
The index of stability or characteristic exponent a describes
the tail of the distribution (smaller «, heavier tails), the
skewness parameter § indicates if the distribution is right-
or left-skewed, and the scale and shift parameters v and §
are similar to the variance and the mean in a normal distri-
bution, respectively, in the following sense:

VZ+ 5 ~ Sa, 7, 8,6), )
where Z ~ S(a, 1, 8,0) is called standard a—stable random
variable. We will use the shorthand notations S(«, 1, 3,0) =
S(a,B) and SaS = S(a,7,0,0) for a symmetric a—stable
distribution. A closed—form expression for the pdf of these
distributions do not exist in general, but some exceptions
are the Gaussian distribution NV (u,0%) = S(2, %, 0, 1), the

Cauchy distribution S(1,7,0,6), and the Lévy distribution
$(05,7,1,6) [7].

The product property of SaS distributions [7] states that
every SaS r.v. can be expressed as the product of a Sa§
r.v. and a totally positive skewed a—stable r.v. A corollary
of this property states that a Sa.S r.v. can always be rep-
resented as the product of a Gaussian r.v. and a positive
totally skewed a—stable r.v., what is called a Scale Mixture
of Normals (SMiN) representation [10].

Using this representation, every SaS r.v. can be ex-
pressed in a conditionally Gaussian form as follows:

z~ S(,7,0,6), u~N(0,1)and A~ S (%,1),
z =0+ vV,
2IA ~ N (8,72 N).

®3)

This property is the key point to reformulate the nonlinear
SaS measurement equation into a conditionally Gaussian
form allowing the use of Gaussian techniques to solve the
filtering problem.

3. STATE-SPACE MODEL

In this paper we are interested in nonlinear filtering problems
where the process noise is Gaussian and the measurement
noise is symmetric a—stable distributed, both being additive.
The heavy-tailed measurement noise accounts for possible
outliers or impulsive behavior in the observations, giving a
more general and flexible framework than considering the
standard Gaussian case [9].

The assumed discrete state-space model is expressed as

(4)
()

where k € Z refers to discret time instants, xx € RY and
yvi € RE are the states and the observations at time k, where
the components (yk,1,-.., Yk, ) are assumed to be indepen-
dent. f and h are the process and measurement equations,
known and nonlinear in a general case. v = {vi,k € Z}

fro—1 (Xk—1) + Vi,
hy, (xx) + ng,

Xk
Ye =

and n* = {nj, k € Z} are the process (Gaussian) and obser-
vation (Sa.S) noises, which are mutually independent with
unknown statistics (i.e., in real-life systems we do not have
complete knowledge of the system dynamics)

N(07 Ev,k)v
Dynx,

(6)
(7)

Vi ~

n;, =
where each element of 7y is standard Sa.S distributed:

Ne,i ~ S(ag,0) for i=1,...,L,

and the scale factor diagonal matrix is defined as

Dk = diag('}/nk,17~~'7’y’nkyll)'

Using the SMiN representation of an a—stable distribu-
tion, we can rewrite the measurement equation in a condi-
tionally Gaussian form

Vi = hy (%) + ny, (8)

where n; ~ N (0,3, ) and

. g
Enyk = dlag ('Yik,l)‘k,la e ,'yik’L/\k,L) Ak,i ~ S (?, 1) .
9)

The robust Bayesian filtering problem within the con-
ditionally Gaussian form concerns the recursive estimation
of the states x; and the unknown parameters of the system,
namely the process noise covariance matrix 3, ; and for each
element of y; the triad ¢y = (fynk,i,)\k,i,ai)T. We define
the vector containing all the measurement noise parameters
as ¢ = {¢r,i, for i € [1, L]} and we denote as 0}, the overall
parameter vector containing both process and measurement
noise parameters.

4. HYBRID SQUARE-ROOT
SIGMA-POINT/MONTE CARLO SOLUTION

The solution to the robust Bayesian filtering problem for
the state—space model defined in (4) and (8) is given by the
joint a posteriori distribution p(Xx, Ox|y1:x), which casts all
the information about the states and the model contained
in the observations. Its characterization allows us to obtain
an optimal estimate respect any criterion, for example, the
Mininum Mean Square Error (MMSE) or the Maximum a
Posteriori (MAP) estimates. This pdf can be rewritten as

P(%k; Okly1:k) = p(xk |0k, y1:1)p(Ok [y1:1) (10)
A direct application of a SMC method to obtain the joint
estimation of the states and the parameters of the model
is unviable because the dimensionality of the problem is too
large and the method would collapse. To overcome this prob-
lem we profit of the underlying Gaussian structure. Under
the knowledge of the noise statistics parameters X, 0., and
®o:k, the state—space model is conditionally Gaussian and
we can resort to standard Gaussian techniques to compute
the a posteriori distribution p(xx|€k,y1:x). As the model is
nonlinear we use a SP Kalman filtering method to find this
pdf.

The SP Kalman filters are a family of powerful meth-
ods that use a deterministic sampling to approximate the
integrals of the optimal Bayesian filter. The key idea is to
compute the means and covariances used in the standard
Kalman solution by propagating the sample set through the
process and measurement nonlinear functions. A further re-
finement of SP schemes comes from the fact that, when we
propagate the covariance matrix through a nonlinear func-
tion, the filter should preserve the properties of a covariance
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matrix, namely, its symmetry, and positive-definiteness. In
practice, however, due to lack of arithmetic precision, nu-
merical errors may lead to a loss of these properties. To cir-
cumvent this problem, a square-root filter is introduced to
propagate the square-root of the covariance matrix instead
of the covariance itself [6, 3].

We propose a square-root sigma—point Kalman filter us-
ing quadrature rules [6] to estimate the conditionally Gaus-
sian filtering density p(xx|0x,y1:x). The method is sketched
in Algorithm 1, where we use M sigma—points. We note that
at time k the time update depends on ¥,  and the measure-
ment update depends on ¢. In the algorithm, S = Tria (X)
denotes a general triangularization algorithm (for instance,
the QR decomposition), where S is a lower triangular matrix.
The ”/” operator refers to backward/forward substitution.

From the sigma—point solution we have that the a poste-
riori distribution and the likelihood density follow the nor-
mal distributions

N()A(Mkvzz,k\k) )
N (Frin—1: By pip-1) »

p(xk|00:k7y1:k) =
P(Yk|@o:k, Y1k—1) =

where X, ;; = Sy,wsgﬁ.lj. We note that the covariance ma-
trix of the likelihood density is diagonal because the com-
ponents of the observation, yx i, are independent, so we can
write this pdf as a product of normal distributions (for sim-
plicity, we drop the dependence of the likelihood on the pro-
cess noise statistics parameters),

L

P(Yr|Po:k, Yi:k—1) = Hp(ylm‘

=1

Dok yis Yrik—1,i)s (13)

where the likelihood density of yx,; is computed using the ith
element of the predicted measurement and the i*" element
of the diagonal of the innovation covariance matrix

PWYk,ilPok,is Y1k—1,0) =N (Frik—1.6 [Bykip-1],;) - (14)

Although extended state—spaces can be defined by con-
catenating the original state vector x; with a vector con-
taining other unknown parameters of the state—space model
(i.e., parameters of f(-) and h(-)), the elements of the pro-
cess noise covariance matrix 3,  cannot be jointly estimated
along xx by this approach, since sigma—point methods ne-
glect the nonlinear dependency between x;, and the elements
of 3, k. In other words, time update of Algorithm 1 is com-
puted using only the first two moments of X ,_1, but it is
easily shown that the third-order cross-conditional moment
is non-zero [14] (i.e., x and 0 are not jointly Gaussian), thus
making 3, , not identifiable.

5. NOISE STATISTICS ESTIMATION

Standard estimation techniques such as Kalman-type filters
require a complete knowledge of the process and measure-
ment noise statistics. In real-life systems the full knowledge
of the system dynamics is questionable and we have to de-
rive estimation methods to circumvent this problem and to
obtain a solution that is robust to such uncertainties.

5.1 Process noise statistics estimation

Noise covariance matrix estimation methods can be di-
vided into several categories: correlation methods, covari-
ance matching methods or subspace and minimax methods,
to name a few [14]. In the model proposed in Section 3, the
process noise is supposed to be an additive Gaussian zero—
mean noise (see eq.(4)) with unknown covariance matrix.
The measurement noise statistics parameters are estimated

Algorithm 1 Hybrid Square-root Sigma—point/Monte
Carlo method for nonlinear Bayesian filtering in Sa.S noise

. - T
Require: yi.x, X0, Zz,0 = Sz,0108;,0j0) Zv,15 Sn,1-

1: Define M sigma-points and weights {&;,w; }i=1,...,.m by
using quadrature or cubature rules [2, 3].

2: Set W = diag(y/ws)
3: for k=1 to oo do

4:  Time update
5:  Evaluate the sigma points:
Xik—1k—1 = Se r—1/k—1&i + Xe—1jk—1, 2 = 1,..., M.
6:  Evaluate the propagated sigma points:
X k—1 = F(Xi o—1]k—1)-
7:  Estimate the predicted state:
~ M ~
Xk|lk—1 = Zi:l WiXi klk—1-
8:  Estimate the square—root factor of the predicted error
covariance:

Sz kk—1 = Tria ([/"E'Mk—l Ss, . D, where:
SEU,k is a square-root factor of X, ; such that
21),k - SEvykSE

X1 = [R1 ko1 — Rijk—1

o and

© XL k-1 — Rpk—1] W.

9:  Measurement update
10:  Evaluate the sigma points:
Xiklk—1 = Sa,klk—1& + Xgjk—1, 1 =1,..., M.
11:  Evaluate the propagated sigma points:
Viklk—1 = h(Xi kjp—1)-
12:  Estimate the predicted measurement:
N M ~
Vi1 = D ey Wi¥iklk—1-
13:  Obtain Sy, , by Algorithm 3
14:  Estimate the square—root of the innovation covariance
matrix:
Sy,kik—1 = Tria ([yk\k—l 1Sx,, . ]
Szn,k denotes a square-root factor of X, » such that
ok =Ss,,S%
Vilk—1 = [Y1,6lk=1 — Tk|b=1 ** YLklb—1 — Tk|b—1] W-
15:  Estimate the crossfcoTvariance matrix
Yoy klk—1 = Xijk—1Vp 1, Where:
© XL klk—1 — Rpj—1] W.

) , where:

and

n,k?

Xijh—1 = [X1,kjk—1 — Rk|k—1
16:  Estimate the Kalman gain -
Ky = (Zlysmk*l/sy,k\k—l) /Sy klk—1-
17:  Estimate the updated state
Xijk = Xnph—1 + Ki (Y& — rjp—1)-
18:  Estimate the square-root factor of the corresponding
error covariance:

Se.kix = Tria ([Xklk—l — K Vyj—1 | KiSx,, , D

19:  Obtain Sy, ,,, by Algorithm 2
20: end for

using a Monte Carlo method (Section 5.2) so the problem
under concern in this section is the estimation of the process
noise covariance matrix.

In this paper we use a covariance matching type method
which is an extension to our nonlinear state—space model of
the method first presented in [15]. An intuitive approxima-
tion of the noise term v is qr = Xgx — Xgjk—1. We want
to formulate an estimate of 3, in terms of the sample co-
variance of Xy, — Xg|k—1. If we have at time K the set of
iid. samples {q;}:=1:x we can estimate the covariance of
the sample set as

= la-d@-a’ )

676



withg =1/K Zfil q; the sample mean. The expected value

of Cq gives an indication of what is being estimated. In the
linear case this expectation is given by [15]

K
E[C ! Z (szx,j—l\j—leT — e+ Ev) , (16)

]:1

with F'; the state transition matrix at time j. The equivalent
to our nonlinear problem can be written from the sigma-
point solution (SP sample mean and covariance) as

1 K

E[Cy)"" = (Bj + %) (17)

]:1

with 85 = 00 wiki j1;-1% -1 = Xjj-1%-1 — Da ;-
The unbiased estimator of 3, at time k within the

sigma—point formulation is obtained from Cq = E[C,] (using

all the samples available) as

k 1 k
- Z TR 09

If the process covariance matrix is time—varying we can use
a finite length (L,) sample set ({Qi}i=k—r,+1:x) to estimate
the covariance matrix, instead of the full sample set. The
sequential estimation method for the process noise covari-
ance matrix using the covariance matching type solution
with L, samples is sketched in Algorithm 2, where we note
(a1 — a2)? = (a1 — az)(a1 — az)T. As indicated in [15],
for numerical reasons, the diagonal elements of the process
covariance matrix are reset to the absolute value of their
estimates.

Algorithm 2 Process noise covariance estimation method

1: Set qr — )A(].C“C - )A(k‘kfl.
2: Estimate the mean as qx = qr—1 + 1/Lq(dr — qr—1,)-
3: Estimate the covariance matrix as

Yo k41 = 2 kTt , (qk*Lq - flk)2
+

Lol - Bl )

= {(ar — &r)?

%(Qk —Qk-r,)’

5.2 Measurement noise statistics estimation

In this section we propose a method to obtain the unknown
measurement noise parameters of a SaS distribution, which
have to be estimated for a proper behavior of the algorithm.
As the components yy,; are supposed to be independent, we
can estimate the triad ¢x,; = (Yn, i, Aki, @:)" independently
for each component. So we can use L parallel filters to es-
timate the triad instead of using a method to estimate the
3 X L noise parameters at once, what might be computation-
ally unaffordable.

We first define the evolution of the parameters to be es-
timated: the index of stability a; and the scale parameter ~;
are static parameters, and Ax,; is a totally positive skewed
a—stable random variable with p(Agx;) ~ S(ai/2,1). As we
stated before, from the SP solution we are able to compute
the likelihood p(yk,i|@o:k, Y1:5—1,:). Using this density and
the parameter evolution distributions we are able to con-
struct a SMC solution to estimate the triad ¢ ; for each
element of the observation, yy ;.

It is well known that estimating static parameters can
induce a severe degeneracy of the particles involved in the
SMC method. We use the solution given in [4, ch.10], where
authors consider a refined artificial parameter evolution for
the static parameter which avoids the underlying loss of in-
formation. Within this procedure the static parameters are
supposed to be time-varying with transition densities

p(ak,i|ak,1,i) ~N (aak,u + (1 — 0,)5[}“7171‘7 hQVka_l’i) (19)

p(rynkﬂ'wnk_hi) ~N (afynk—lﬂi + (1 - a):kal,i: hQVlei) (20)

where the parameters are a = (3b—1)/(2b), h? = 1—a?, and
b is a discount factor typically around 0.95 — 0.99. ayx—_1,:,
Vite1 s k-1, and V,ll, , are Monte Carlo sample means and

variances of the Monte Carlo approximation to p(a;|y1:x—1,:)

and p(yn,i _1,i), respectively.
We choose as importance distribution
the prior transition density  p(¢r,i|Pr—1,:) =

plak,ilok—1,:)P(Yng,il Vg _1,i)P(Ak,i), which implies that
the importance weights are proportional to the likelihood
function p(yw,i|Po:k,y1:k-1,:). The method is sketched in
Algorithm 3, where NNV, is the number of particles.

Algorithm 3 Measurement noise parameter estimation

1: fori=1to L do

2:  Draw N, samples from the importance distribution
0]~ p(sl0, ) for j=L,... Ny

3: Compute and normalize the importance weights

w? = @ plyri|dh, yre-14) for j = 1,.,N,
O wf;“
k Z?Ifl wl(cj)

4:  If necessary resample and set weigths to 1/N,
5. Estimate the noise parameter vector

¢k1 _ Z (J)¢(J)_

6: end for

6. COMPUTER SIMULATIONS

In this section, in order to provide illustrative numerical re-
sults, we show how the proposed method performs in a radar
target tracking example where the non-Gaussian measure-
ment noise applies [8, 9]. We follow the setup used in [3] but
assuming that the measurement noise is SasS.

In this application, a target was moving in a 2-D plane
and was tracked by a radar whose measurements were
range and azimuth, yr = [r, wk]T The states to be
tracked were position, velocity and acceleration of the tar-
get. These were respective’},y gathered in vector x; =
[Pa,k> Py ks Vo ks Vy ke G ks Gy k) Both the trajectory and
measurements were modeled as

I TxI T?/2xI
Xp = 0 1 Tx1 xp—1+vie (21)
0 o I
2 2
Ye = VPer Pk ) 4y (22)
arctan(py,k /P k)

where T is the time-interval between measurements, set
to 1 second. The Gaussian process noise was modeled as
vi ~ N(0,%,) and X, = diag(4,4,4,4,0.01,0.01). Each
component of the measurement noise was SaS distributed,
Nk,q ~ S(Oéiy’}/i,o,o), with a; = 1.4, as = 1.8, =7 and
2 = 0.0022. These parameters imply that we might have
strong outliers in the range measurements and weak outliers
in the azimuth measurements. In a Gaussian scenario (o = 2
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and ¢ = 2+?) the measurement noise covariance matrix is
R = diag(98,107°).

The initial state estimate was drawn from N (&0, 24,0)
for each Monte Carlo trial, with &o = [2000, 2000, 20, 20, 0, 0]
and X, = diag(500, 500, 200, 200, 40, 40). We used 3 sigma-
points/dimension so the method required M = 3° = 729
points. The unknown process covariance matrix was ini-
tialized to 100 - 3,. We made 10000 independent Monte
Carlo runs with 100 scans per run and we used the root-mean
square error (RMSE) as the measure of performance. As the
process noise covariance matrix is constant we use all the
samples available (Lq; = k). Concerning the SMC method
initialization for measurement noise parameters estimation,
the initial particles were drawn from U(1,2) for «;, from
U(0,5v;) for the estimation of vy, ; and from S(ap,,1,1,0)
for the estimation of A ;, with &y,,; the mean of the initial
particles for ;. We used N, = 300 particles.

In figure 1, we plot the RMSE of the estimation of the po-
sition obtained with the proposed method together with the
Bayesian Cramér-Rao bound (BCRB) [16] associated with
the Gaussian equivalent problem (without outliers). The
BCRB is used as a benchmark to assess the ultimate perfor-
mance achievable in the Gaussian case with known process
and measurement noise statistics. As a reference we also
plot the results obtained in the standard Gaussian case with
known statistics using a Square-root Quadrature Kalman
Filter (SQKF) and the a-stable case with known noise statis-
tics.

RMSE of position
100 !
—BCRB
90 i Gaussian SQKF, Gaussian noise]
8ol Gaussian SQKF, a—stable noise
== Hybrid SPKF/SMC method
708 -=-a-stable SQKF known statistics
E 6o
g o
S 5o
(7]
Z
‘:'."’"'""1:‘:;.

0 10 20 30 40 60 70 80 90 100

50
time [s]
Figure 1: Postion RMSE for the hybrid SPKF/SMC method
and the SQKF with known statistics for both Gaussian and
a-stable cases. The Gaussian BCRB is plotted as a bench-
mark.

We can see that the performances obtained with the
SQKF (dotted blue line) in the Gaussian case are optimal
because they coincide with the BCRB (solid magenta line).
When we introduced outliers (a-stable framework) the per-
formances obtained with the SQKF still considering Gaus-
sian noise were really poor (solid thin green line).

Considering a full knowledge of the statistics of the mea-
surement noise (a-stable case with known statistics) we ob-
tained reasonable good performances compared to the opti-
mal case (dashed black line). The results obtained in this
case are our reference for the hybrid SPKF/SMC ultimate
achievable performance.

The results obtained with the proposed method (dot-
dashed red line) are really encouraging. We can see that the
proposed filter is able to deal with the impulsive behavior of
the measurement noise and the unknown noise statistics in
scenarios where other Gaussian filters fail, even with known
statistic noise parameters, with a limited perfomance degra-
dation.

7. CONCLUSIONS

This paper presented a solution to the robust Bayesian filter-
ing problem for nonlinear state-space models with a—stable
measurement noise, what has been proven to be a more ap-
propriate representation of the measurement than the stan-
dard Gaussian case in many real-life systems. The method
was validated by computer simulation in a target tracking
application. We saw that the proposed method attains good
performance results dealing correctly with outliers/impul-
sive behaviors in the measurement and unknown process and
measurement noise statistics, while being computationally
affordable when compared to standard methods.
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